En 6

FLOW SWITCHES & COMBINATION CONTROLS

• Pressure switches & air switches:

• Float level switches, Vertical & horizontal models for OEM applications:

See catalogue No.5

See catalogue No.7

Contact us

P1-2

Р1

P2-6

Р1

P1-10

P3-4

Section 1 Summary

Section 2 Flow switches historical and technical foreword

Technical information

Section 3 Reference list

Paddle types, microswitch contact

Plastic paddle, ¾" BSPP loose nut, fixed setting

NN≥25 PN10

NN≥25 PN10

NN≥25 Plastic paddle, ½" BSPP male thread, fixed setting, with in Pt100 temperature sensor

	-6	IVID	DN≥15	Trastic paddic, 74 BSTT 1003c Hdt, fixed Setting	13-4					
		D1D	PN10	Paddle flow switches, micro-switch contact, ½" BSPP male	DE 6					
		R1D	DN≥25	thread.	P5-6					
Section 4		R1R	PN10	Plastic paddle, ½" BSPP male thread, fixed setting, with built	P7-8					
	10	VIV	DN≥25	in Pt100 temperature sensor	F7-0					
		R15	PN10	Stainless steel paddle and box, IP69K, 3/4" male stainless	P9-10					
		KIJ	DN≥32	steel fitting	F 9-10					
Paddle types, reed switch contact										
		Pa	ddle types	, reed switch contact	P1-24					
		Pa R1L	ddle types PN10	Short plastic paddle, ½" BSPP male thread, gravity pull-back,						
	- 1				P1-24					
		R1L	PN10	Short plastic paddle, $\frac{1}{2}$ " BSPP male thread, gravity pull-back, fixed setting. (Also exists with $\frac{1}{2}$ " NPT male thread = type	P3-4					
	-10-	R1L (R1G)	PN10 DN≥25	Short plastic paddle, ½" BSPP male thread, gravity pull-back, fixed setting. (Also exists with ½" NPT male thread = type R1G)						
		R1L (R1G)	PN10 DN≥25 PN10	Short plastic paddle, ½" BSPP male thread, gravity pull-back, fixed setting. (Also exists with ½" NPT male thread = type R1G) Extended paddle arm, ½" BSPP male thread, gravity pull-back,	P3-4					

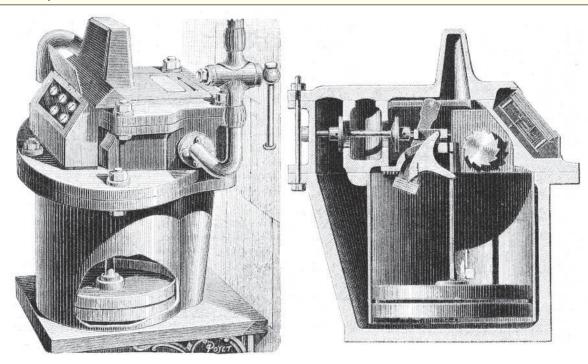
		(R1G)	DN≥25	R1G)	P3-4
		R1Y PN10		Extended paddle arm, ½" BSPP male thread, gravity pull-back,	DE C
		(R1E)	DN63	fixed setting. (Also exists with ½"NPT male thread = type R1E)	P5-6
	\ - 0	R1S	PN10	Long trimmable plastic paddle, ½" BSPP thread, magnetic	D7 0
		(R1F)	DN≥25	spring, fixed setting. (Also exists with ½" NPT male thread = type R1F)	P7-8
	3 0.	D1D	PN10	Long trimmable plastic paddle, ¾" BSPP loose nut, magnetic	DO 10
		R1P	DN≥20	spring, adjustable setting, slim design	P9-10
		R1Q	PN3	Tee equipped with paddle flow switch, for spa applications,	P11-12
Section 5		RIQ	DN20	mounting on 1" (20 to 21mm ID) soft PVC tubes, adjustable setting	P11-12
		R1X	PN10	Long trimmable plastic paddle, ¾" BSPP loose nut, magnetic	P13-15
		KIX	DN≥15	spring, adjustable setting	P13-13
		R1Z	PN6	Long trimmable plastic paddle, ¾" BSPP loose nut , magnetic	P16-18
		NIZ	DN≥15	spring, fixed setting, low voltage simplified model.	P10-18
		DAV	PN25	Long trimmable plastic paddle, ¾" BSPP loose nut, brass	D40 24
		R1V	DN≥15	body, and brass nut, IP55 connection box, magnetic spring, adjustable setting	P19-21
	-0-4	RAX	PN10	Long trimmable plastic paddle, ¾" BSPP loose nut , magnetic	P22-23
		KAX	DN≥15	spring, adjustable setting. Built-in 16A 230V SPDT relay	122 23

Summary

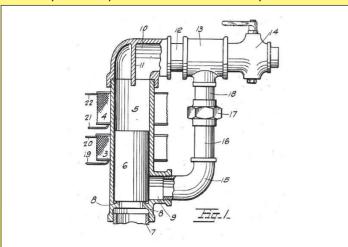
Because of permanent improvement of our products, drawings, descriptions, features used on these data sheets are for guidance only and can be modified without prior advice

Flap type, in line mounting										
		R20	PN10	½" BSPP male water inlet. Snap outlet for dia. 8 mm copper tube. For small size instant water heater	P3-4					
			DN8	tube. For small size instant water neater						
		R21	PN10	½" BSPP male water inlet. Snap outlet for dia. 8 mm copper tube. For small size instant water heater. Built-in triac cooling	P5-6					
Section 6			DN8	plate						
		R23	PN10	½" BSPP water inlet. Outlet for dia. 8 mm copper tube. Built-in water pressure switch. For miniature Instant water heater	P7-8					
			DN8	water pressure switch. For miniature instant water neater						
		R22	PN10	½" BSPP water inlet. Outlet for dia. 8 mm copper tube. Built-in disc thermostat. For miniature Instant water heater with	P9-10					
			DN8	inlet temperature control						
			P	iston type	P1-10					
		R3F	PN10	½" BSPP male water inlet, snap outlet for 10 mm dia. copper	P3-4					
		K3F	DN10	tubes. For instant water heater. Built-in over-pressure valve	P3-4					
		R35	PN10		P5-6					
Section 7		N33	DN15	½" BSPP water inlet and outlet	F3-0					
Section 7		R34	PN10	Water inlet and outlet for copper pipes with O.D. 18 mm	P7-8					
		11.54	DN15	water filler and outlet for copper pipes with O.D. 10 film	17-0					
		R36	PN10	3/4" Water inlet and outlet, with built in 15 bar pressure valve	P9-10					
		1130	DN20	74 Water filler and outlet, with built in 15 but pressure valve	13 10					
			А	ccessories	P1-4					
Section 8			6R	Fittings, saddles and other parts for paddle switch pipe mountings	P3-4					
				Tables	P1-4					
Section 9				Flow switch selection table upon flow and diameter	P3					

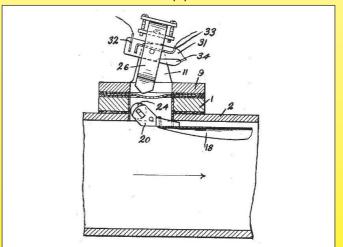
www.ultimheat.com


Flow switches historical and technical foreword

Contact us www.ultimheat.com Cat6-2-2-1


Flow switches historical and technical foreword

In antiquity, the flow measurement was one of the first means of time measurement. But it was not until the steam engines development and the need to control their water supply, that measuring devices were developed. The gas and potable water distribution network development, brought the city of Paris to mandate individual water meters in January 1881. These meters were operated by a piston system, whereas in England and Belgium, pioneer countries in this field, turbine systems were chosen.



1881, in the Paris first water meters, the measurement is performed by a piston (Jacquet's system)

The development of electric and gas instant water heaters in the 1920/1930 brought the necessity of a security system to avoid heating when there is no flow. The use of paddles operating a switch had a major issue: avoid the leaks of the passage through the wall between the water circulating and the electrical switch. Gasket and were not efficient and wre reducing the flow measurement sensitivity, especially for small dimension appliances. The first flow switch using a piston, without connection passage between water and electrical section, appears to be the Walker type, where the metallic piston displacement is measured by two electromagnetic coils located outside the pipe.

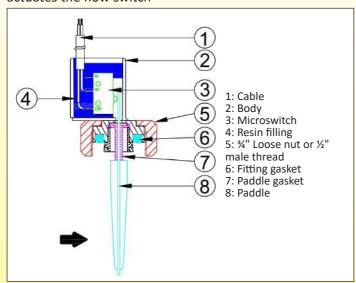
1930 Walker magnetic flow sensor for water heater: the metal piston (6) moves between two magnetic coils (3 and 4) US Patent 1962795.

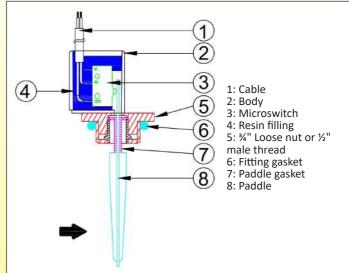
In 1931, the first paddle switch with a magnetic action is invented by Louis E. Richmond (US Patent 1888737). A paddle with a metallic roller actuates a balanced magnet with a mercury switch located outside.

It was not until 1936 and the reed switch invention by the American engineer W. B. Ellwood of the Bell Telephone Laboratories (U.S. Patent 3,310,863) that freed paddle, piston or turbine flow sensors from gaskets and seals and allowed them to miniaturize.

The reed switches are now used in thousands of different applications, and the annual world production is counted in hundreds of millions of pieces.

features used on these data sheets are for guidance only and can be modified without permanent improvement of our products, drawings, descriptions,


<u>Q</u>


Flow switches historical and technical foreword

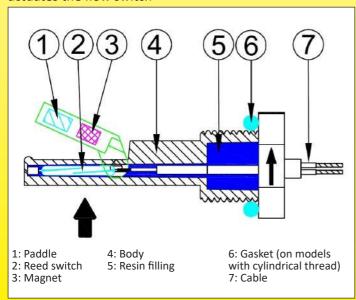
Operation

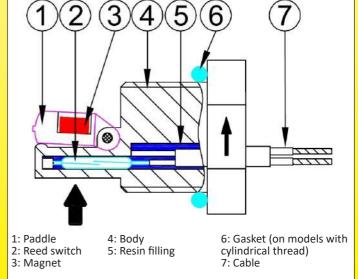
Paddle and micro-switch types

In the "in line" types, only a part of the flow, function of the ratio between the pipe section and the paddle surface actuates the flow switch

Operating Principle

In the paddle and switch flowswitches, the paddle is pushed by the water flow and actuates a microswitch. The seal between the paddle and the electric part is made by a Santoprene elastomeric gasket. Set point calibration value is given mainly by the paddle length and its the surface, the microswitch actuating force, the pipe diameter. As in all paddle flow switches, due to the weight of the paddle, the setting will vary slightly according to the mounting position (horizontal or vertical, and in the latter case, flow inlet direction from top to bottom or from bottom to top).


During assembly it is important to check that the paddle is correctly oriented in the flow direction and that no friction or obstacle hinders its movement. Therefore it is better to focus on devices with ¾" union nut mounting, or clips and O-ring assembly (type Ultimheat Snap-in), which allow easy aorientation djustment, unlike models with fixed thread. The temperature and pressure withstanding values, as well as resistance to chemical products are limited by the paddle gasket material.


These models have the advantage of high electrical rating, and do not contain magnets, allowing them for use with liquids that may contain magnetic particles.

In the $\frac{1}{2}$ " fixed thread types, it is possible to include a built-in temperature sensor: NTC, thermocouple, or Pt100, thus allowing the liquid temperature measurement.

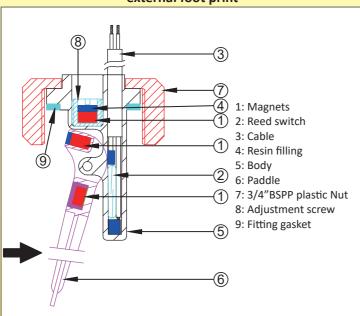
Paddle and reed switch types, gravity back-force

In the "in line" types, only a part of the flow, function of the ratio between the pipe section and the paddle surface actuates the flow switch

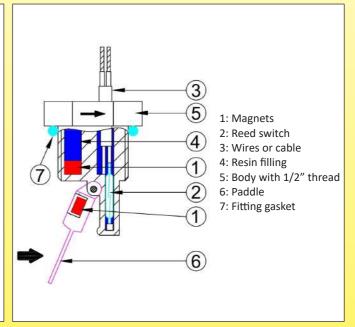
Cat6-2-2-4 Contact us www.ultimheat.com

Flow switches historical and technical foreword

Operating Principle


In the gravity pull-back paddle flow switches, when the upstream flow pushes against the paddle, the paddle swings away. This changes the position of the magnet in relation to the reed contact and thus activates the contact. As soon as the flow decreases or is interrupted, the paddle moves back to its starting position, and reed switch comes back to its starting contact position. The force necessary to push the paddle is provided by the magnets repelling each other. Our fixed setting paddle switches use only two magnets, and our adjustable setting types have one extra magnet use for repelling force adjustment. This system has no communication or gasket between the paddle and the electrical part. No metal parts are in contact with the liquid, with the exception of some models with a titanium axis. Therefore they are particularly suitable for applications on aggressive liquids, swimming pool water, sea water, or chloration or bromisation equipment. Most models can be used on pipes from 20 to 100 mm diameter, by using an adapted length paddle. Set point calibration value is given mainly by the paddle length and surface, the diameter of the pipe, and, in adjustable versions by the position of the magnet position adjusting screw. As in all paddle flow switch range, due to the weight of the paddle, the setting will vary s lightly according to the mounting position (horizontal or vertical, and in the latter case, flow inlet direction from top to bottom or from bottom to top)

During assembly it is important to check that the paddle is correctly oriented in the flow direction and that no friction or obstacle hinders its movement. As the paddle is magnetic, the circuit must be free of all magnetic particles. The low electrical ratings of the reed switches limit their use in pilot circuits or electronic circuits.


Paddle and reed switch types, magnetic pull-force, slim design

In the paddle types, <u>only a part of the flow</u>, function of the ratio between the pipe section and the paddle surface, actuates the flow switch.

3 magnets, factory adjustable set point type, smallest external foot print

2 magnets fixed setting, the lowest foot print

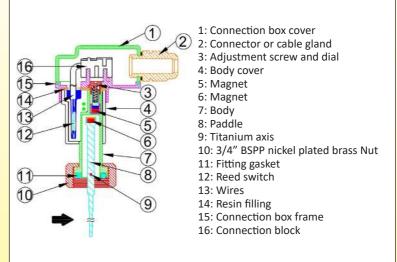
Operating Principle

In the paddle and reed switch types, with magnetic pull-force and slim design, the flow pushes against the paddle, the paddle swings away and the reed switch contact closes. As soon as the flow decrease or is interrupted, the paddle is pulled back by the magnet to its starting position, and reed switch contact opens. The fixed setting paddle switches with slim design use only two magnets, but the adjustable setting types have one extra magnet used for force adjustment. This system has no communication or gasket between the paddle and the electrical part. No metal parts are in contact with the liquid, with the exception of some models with a titanium axis. Therefore they are particularly suitable for applications on aggressive liquids, swimming pool water, sea water, or chloration or bromisation equipment. Most models can be used on pipes from 20 to 100 mm diameter, by using an adapted length paddle. Set point calibration value is given mainly by the paddle length and surface, the diameter of the pipe, and, in adjustable versions by the position of the adjusting screw. As in all paddle flow switch range, due to the weight of the paddle, the setting will vary slightly according to the mounting position (horizontal or vertical, and in the latter case, flow inlet direction from top to bottom or from bottom to top)

During assembly it is important to check that the paddle is correctly oriented in the flow direction and that no friction or obstacle hinders its movement. Therefore it is better to focus on devices with ¾" union nut mounting, or clips and O-ring assembly (type Ultimheat Snap-in), which allow easy orientation adjustment, unlike models with fixed thread. As the paddle is magnetic, the circuit must be free of all magnetic particles. The low power ratings of the reed switches limit their use in pilot or electronic circuits

Contact us www.ultimheat.com Cat6-2-2-5

Flow switches historical and technical foreword

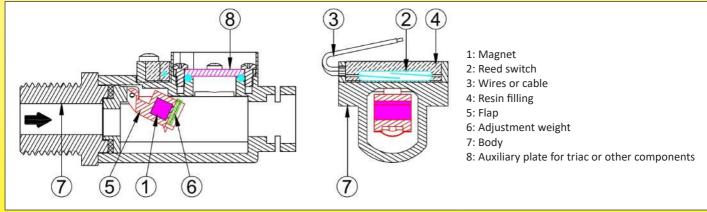

Paddle and reed switch types, magnetic back-force, long design

In the paddle types, <u>only a part of the flow,</u> function of the ratio between the pipe section and the paddle surface, actuates the flow switch

2 magnets fixed setting, external mechanism

1: Cable 2: Cover 3: Magnet 4: Magnet 5: Body 6: Paddle 7: Titanium axis 8: 3/4" BSPP plastic loose nut 9: Fitting gasket 10: Reed switch 11: Resin filling

2 magnets adjustable setting, external mechanism



Operating Principle

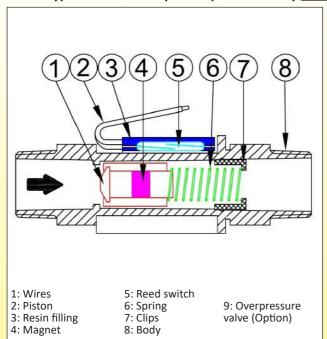
In the paddle and reed switch types, with magnetic pull-force and long design, the flow pushes against the paddle, the paddle swings away and the reed switch contact closes. As soon as the flow decreases or is interrupted, the paddle is pulled back by the magnet to its starting position, and reed switch contact opens. This system has no communication or gasket between the paddle and the electrical part. No metal parts are in contact with the liquid, with the exception of some models with a titanium axis. Therefore they are particularly suitable for applications on aggressive liquids, swimming pool water, sea water, or chloration or bromisation equipment. Most models can be used on pipes from 20 to 100 mm diameter, by using an adapted paddle length. Set point calibration value is given mainly by the paddle length and surface, the diameter of the pipe, and, in adjustable versions, by the position of the adjusting screw. As in all paddle flow switch range, due to the weight of the paddle, the setting will vary slightly according to the mounting position (horizontal or vertical, and in the latter case, flow inlet direction from top to bottom or from bottom to top) During assembly it is important to check that the paddle is correctly oriented in the flow direction and that no friction or obstacle hinders its movement. As the paddle is magnetic, the circuit must be free of all magnetic particles. The low power ratings of the reed switches limit their use in pilot or electronic circuits

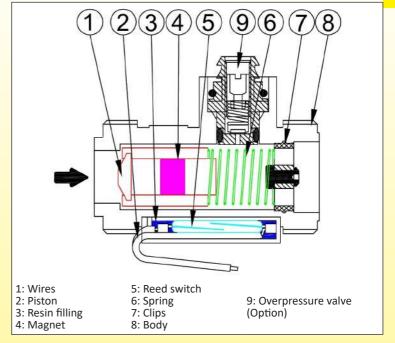
Hinged flap and reed switch types

In the hinged flap types, 100% of the flow goes through the flow switch

Operating Principle

In "In line" flap reed flow switches, the hinged flap is moved by the water flow and closes a reed switch contact. There is no sealing problem between the liquid and electrical side, because both are completely separated. When the flow stops or decreases, the magnetic flap returns to its original position by its own weight (vertical position and bottom water inlet are required). The detection set point value is given by a variable mass lodged in the flap. This solution is suitable for small diameter pipes and wall mounting instant water heaters. As the flap is magnetized, the circuit must be free of all magnetic particles. These devices include a location for mounting an auxiliary system: water cooled triac heat exchanger, pressure switch, disc thermostat or temperature sensor. The low power ratings of the reed switches limit their use in pilot or electronic circuits.


Cat6-2-2-6 Contact us www.ultimheat.com


data sheets are for guidance only and can be modified without prior features used

Flow switches historical and technical foreword

Piston and reed switch types

Piston type flow switches place a piston directly in 100% of the flow path

Operating Principle

Inside "in line" piston and reed type flow switch, the piston, when displaced by the pressure differential from fluid flow, magnetically actuates a reed switch. There is no sealing problem between the liquid and electrical part because both are completely separated. When the flow stops or decreases, the magnetic piston comes back to its original position by its own weight (vertical installation, water inlet downside), or by a spring (vertical, water inlet upside). The detection set point value is given mainly by the piston shape, its mass and eventually by the spring pull back force. This solution is suitable for small diameter pipes. The piston being magnetized, the circuit must be free of all magnetic particles. The low power ratings of the reed switches limit their use in pilot or electronic circuits.

Description of the different parts

The electrical contact system: reed switch or micro-switch.

A certain force is required to actuate the electrical contact device. It can range from a few tenths of grams for systems with reed contacts with a power rating of 10 to 20VA (0.5Amp), to 50 grams for snap action micro-switches with a 5Amp 250V rating

In general, the force required to operate an electrical contact increases with its electrical rating, and the power available on the detector depends on the float volume. Most flow switches in this catalog use reed switches because they are used for detection level in low voltage and low current electronic circuits. This makes possible to design compact devices.

Reed switches

our

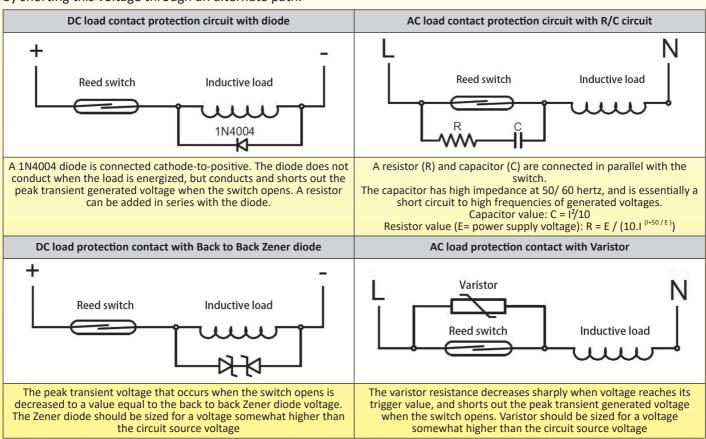
permanent improvement of

Reed switches are small glass bulbs with a flexible reed strip contact with a breaking capacity of 10 to 70VA, which has the particularity to close in the presence of a magnetic field. These glass bulbs are sealed and filled with argon or under vacuum, therefore they are protected from oxidation

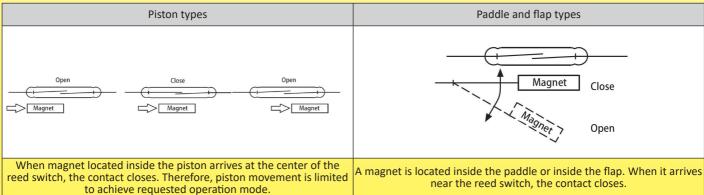
Reed switch applications in flow switches

Suitable	Not suitable			
Computer circuits	Small electrical motors, including small DC motors			
Programmable logic controller (PLC's) circuits	Power contactor coil circuits (Unless protected by an arc suppression circuit)			
Small relays	Solenoid valves (Unless protected by an arc suppression circuit)			
Solid state relay (SSR) trigger circuits	Incandescent lamps			

Reed switches contact protection


Switching no load or loads where the voltage is less than 5 Volts @ 10 mA or less, the contacts undergo little or no wear and life times in excess of billions of operations are expected. In the 10 Volt range, higher contact wear will take place. Switching 10 Volts @ 10 mA, life times of 50 million to 200 million operations can be expected. When switching inductive loads such as relays, solenoids and transformers, reed switch contacts require protection

Contact us www.ultimheat.com Cat6-2-2-7



Flow switches historical and technical foreword

in order to insure long, dependable life. When current is interrupted, the inductance or electrical inertia of the load generates a large high frequency voltage, which appears across the switch contacts. If the voltage is large enough, it can break down the medium in the gap between them, making a conductive path. This phenomenon is called arcing. Arcing can cause the contacts to burn, weld together or stick. The purpose of protection circuits is to prevent arcing, by shorting this voltage through an alternate path.

Magnet displacement and reed switch operation in flow switches

Snap action switches

On snap action switches, contact opening speed is around 1m per second. The contact spacing reaches the distance to extinguish the arcing in less than 1/1000 sec. Therefore there is no radio interference, and the contact does not deteriorate. Mechanically, this type of contact, also called "energy storing contact" is much more complicated, expensive, and does not allow such a great control than reed switches.

The snap action microswitch is particularly suitable for devices operating at 240 or 400 V and when high electrical rating is required

Microswitches vs reed switches in flowswitches

Disadvantages	Advantages
Microswitches are more expensive than reed switches	Microswitches have higher electrical ratings, in 110VAC and 230VAC
Microswitches have a higher operating force, so they need larger paddles	Microswitches are easily made with SPNC, SPNO or change over contacts
Micro-switches have large differential travels, providing large flow differentials between contact opening and close	Snap action contact switches generate very low EMC

Cat6-2-2-8 Contact us www.ultimheat.com

2

Flow switches historical and technical foreword

Magnets (In reed switch devices)

Selecting a magnet for a flow switch application must take into account the characteristics of the liquid in which it will be immersed, of the temperature at which it will be subjected, of its corrosion resistance, of the magnetic field required to operate the switch and its distance to the reed switches. Ferrite magnets have a good resistance to corrosion, but a very low magnetic power. Neodymium -Iron-Boron magnets contain 60-75% iron (amount is dependent on grade) and are therefore prone to corrosion, but a very big magnetic power. So these magnets are nickel plated and plastic overmolded.

Both these magnets have a good temperature resistance up to 100°C

Electrical wiring

For reed switch systems, the most common electrical connection is by wires or cable. Given the low electrical rating of reed switches, conductor cross section is generally less than or equal to 0.5mm². If there is no thermal stress or environmental conditions, wires and cables are PVC insulated. Silicone insulation, FEP and Teflon are not recommended because they do not provide hermetic sealing with resin filling and may let water or moisture inside the product.

Tabs or connector outputs are recommended for large quantities.

Resin filling (For reed switch types)

The resin filling provides two functions

- Mechanically securing the reed in the body, and provide its resistance to tearing (Standards impose a tearing resistance equal to or greater than 10N)
- Main electrical insulation of the electrical contact and wiring. This requires a UL94-VO resin. In some customer applications the insulation class I is insufficient, and the contact system must receive and additional insulation to comply to the requirements of insulation class II

Mechanical stop of measuring device

The mechanical displacement of the piston or paddle must be limited to remain within the limits of the magnet position detection by the reed switch.

Mechanism body and mounting system

Choice of material:

The body of the mechanism provides several functions:

- Device protection against electric shock, water ingress, pressure value, and chemicals.

Plastics used for the body are always UL94-VO rated

- The use in potable water systems:

Models intended for use in drinking water are made of plastic and metal parts in contact with water that meets the specifications of the WRC (Water Research Council)

- The flow switch mounting:

This mounting can be secured by NPT or BSPT (Tapered) threads, or BSPP cylindrical threads or metric threads. Tapered threads require sealing on the threads, and the cylindrical threads require sealing by a flat gasket or O-ring

Metallic parts inside magnetic devices

On flow switches using a magnetic mechanism, liquids containing magnetic particles such as iron filings must be avoided, because these particles will accumulate on the magnet.

It is possible to use a magnetic trap upstream if it is not possible to avoid magnetic flow switches in the final application

Ingress protection

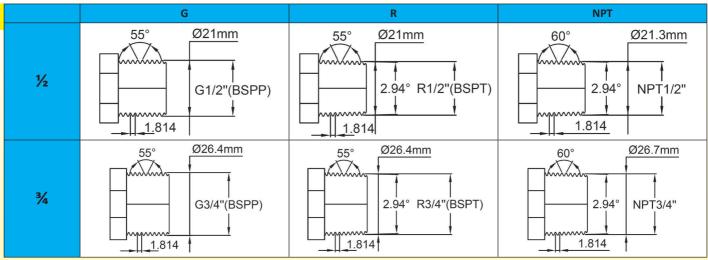
This protection can have several functions:

- Ingress protection against attacks from the outside environment (rain, dust, shock). Most of our flow switches have their electrical components potted inside an electrical insulation and waterproof resin. Some of them can also be provided with waterproof protection box
- Protection against the conditions in which the product will be installed in its application.

In most cases, level switches will be integrated by an OEM into a machine or equipment. Then it is this machine or equipment that will ensure protection against water, dust, shock and other contaminants.

- Protection against gas and dust explosive atmospheres: flow switches were not initially designed for use in these environments and therefore may not meet the applicable standards in this field of application.

Overmolded reed switches do not have potential sources of ignition. On special request, they can be subjected to an ignition hazard assessment according to DIN EN 13463-1: 2002. They could be, therefore, not subject to directive 94/9/EC, and used as a simple electrical device for connection to a certified intrinsically safe circuit in accordance with DIN EN 60079-11: 2007.


Compliance with the European directive 2006-42 (Machinery directive):

These flow switches are not a safety component as described in this directive. Their operational safety is only guaranteed when they are used for flow monitoring of liquids, inside the limits given by their data sheets and instruction manual.

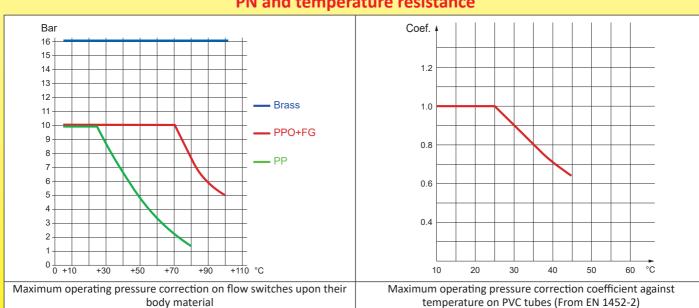
Contact us www.ultimheat.com Cat6-2-2-9

Flow switches historical and technical foreword

Threads and threaded pipe connections

The correspondences between the threads, and they may have different names in different countries and often it is difficult to understand catalogs and plans.

The threads used in flow sensors can be:


- ½" NPT: tapered thread, American standard ANSI B1-20-1
- ½" BSPT: tapered thread, meet ISO-7-1, DIN2999, BS21, often called "conical gas thread" or "conical gas", but they may also be described in documents under the abbreviation "Rp", "R" and in France "conical 15-21" (for ½"), and "conical 20-27" (for the 3/4")
- ½" BSPP and ¾" BSPP: cylindrical thread, described in ISO 228, DIN259, often called "cylindrical gas thread" or "BSP" as described on the documents under the abbreviation "G", and in France "cylindrical 15-21" (for ½"), and "cylindrical 20-27" (for the ¾").

Male cylindrical threads are mounted in cylindrical female thread, with a flat gasket or an O-ring seal on a flat seal

The tapered male threads are mounted in cylindrical female threads with a sealant on the pitch.

In tapered threads, there is a strong resemblance between BSPT and NPT in sizes ½" and ¾". For these dimensions only, they have the same pitch, diameters very close, and a slight pitch angle difference (55° and 60°), and this explains why in some cases, and for plastic threads, ½" NPT male will fit quite correctly in a BSPP female thread.

PN and temperature resistance

The Nominal pressure (PN) is the pressure which is often used in the design of a pipeline. This value is expressed in bar, as the pressure at the temperature of 25°C for which the equipment is able to withstand pressure without failure and with adequate security during a given time. At 25°C the nominal pressure corresponds to the maximum operating pressure (PFA). This pressure varies with temperature and the characteristics of the material used, so great care must be taken when this concept is used. The main standard is EN 1452-2 for drinking water supply pipes in PVC. This standard provides the correction coefficient of the maximum operating pressure between 20 and 45°C for PVC.

guidance only and can be modified without prior advice products, drawings, descriptions, features used on these data sheets are for permanent improvement of our Because of

Contact us www.ultimheat.com Cat6-2-2-11

Reference list

Contact us www.ultimheat.com Cat6-2-3-1

References list

can be modified without prior advice	References list		References list		References list
rior a	6R1C1234B		R1E622768F25P050		R1Q623348S15P200
out p	6R1P1213S		R1E622768F25P100		R1Q623348S15P300
with	6R1P3419B 6R1P3419S 6R1S1525C		R1E622768F25P200		R1Q643348S15P050
ified			R1F6D4766F25P050		R1Q643348S15P100
pom			R1F6D4766F25P100		R1Q643348S15P200
n be	6R1S1525S		R1G611534F25P050		R1Q643348S15P300
nd ca	6R1SF12100		R1G611534F25P100		R1RH05079F43N00C
nly aı	6R1SF1240		R1G611534F25P200		R1RH05079F43N050
lce ol	6R1SF1250		R1F6D4766F25P200		R1RH05079F43N100
uidar	6R1SF1263		R1L611536F45P050		R1RH05079F43N200
criptions, features used on these data sheets are for guidance only and	6R1SM34100		R1L611536F45P100		R1S6D4771F45P050
are	6R1SM3440		R1L611536F45P200		R1S6D4771F45P100
heets	6R1SM3450		R1P616884G35P050		R1S6D4771F45P200
ata s	6R1SM3463		R1P616884G35P100		R1V636680G35N00C
ese d	6R1TB3434		R1P616884G35P200		R1V636680G35N00D
on th	6R1TP3425		R1P616884S15P050		R1V636680G35N00L
sed o	R15KU23STH3C4000		R1P616884S15P100		R1V676680G35N00C
res u	R15KV23STH3C4000		R1P616884S15P200		R1V676680G35N00D
featu	R15KW23STH3C4000		R1P626884G35P050		R1V676680G35N00L
ons,	R1BH01235M33N00C		R1P626884G35P100		R1V6E6680G35N00C
cripti	R1BH01235M33N050		R1P626884G35P200		R1V6E6680G35N00D
, des	R1BH01235M33N100		R1P626884S15P050		R1V6E6680G35N00L
vings	R1BH01235M33N200		R1P626884S15P100		R1X636680G35N00C
, drav	R1BH05073M33N00C		R1P626884S15P200		R1X636680G35N00D
lucts,	R1BH05073M33N050		R1P646884G35P050		R1X636680G35N00L
proc	R1BH05073M33N100		R1P646884G35P100		R1X636680G35N050
f our	R1BH05073M33N200		R1P646884G35P200		R1X636680G35N200
ent o	R1BH05073S13N00C		R1P646884S15P050		R1X636680G35N300
vem	R1BH05073S13N050		R1P646884S15P100		R1X676680G35N00C
mpro	R1BH05073S13N100		R1P646884S15P200		R1X676680G35N00D
permanent improvement of our products, drawings,	R1BH05073S13N200		R1Q613348S15P050		R1X676680G35N00L
rman	R1DH05079F43N00C		R1Q613348S15P100		R1X676680G35N050
of pe	R1DH05079F43N050		R1Q613348S15P300		R1X676680G35N200
Because of	R1DH05079F43N100		R1Q623348S15P050		R1X676680G35N300
Beca	R1DH05079F43N200		R1Q623348S15P100		R1X6E6680G35N00C

References list	References list
R1Q623348S15P200	R1X6E6680G35N00D
R1Q623348S15P300	R1X6E6680G35N00L
R1Q643348S15P050	R1X6E6680G35N050
R1Q643348S15P100	R1X6E6680G35N200
R1Q643348S15P200	R1X6E6680G35N300
R1Q643348S15P300	R1Y622768F45P050
R1RH05079F43N00C	R1Y622768F45P100
R1RH05079F43N050	R1Y622768F45P200
R1RH05079F43N100	R1Z286680G35N050
R1RH05079F43N200	R1Z286680G35N200
R1S6D4771F45P050	R1Z286680G35N300
R1S6D4771F45P100	R1Z296680G35N050
R1S6D4771F45P200	R1Z296680G35N200
R1V636680G35N00C	R1Z296680G35N300
R1V636680G35N00D	R1Z2B6680G35N050
R1V636680G35N00L	R1Z2B6680G35N200
R1V676680G35N00C	R1Z2B6680G35N300
R1V676680G35N00D	R1Z2E6680G35N050
R1V676680G35N00L	R1Z2E6680G35N200
R1V6E6680G35N00C	R1Z2E6680G35N300
R1V6E6680G35N00D	R1Z2J6680G35N050
R1V6E6680G35N00L	R1Z2J6680G35N200
R1X636680G35N00C	R1Z2J6680G35N300
R1X636680G35N00D	R1Z2S6680G35N050
R1X636680G35N00L	R1Z2S6680G35N200
R1X636680G35N050	R1Z2S6680G35N300
R1X636680G35N200	R20B670200000430
R1X636680G35N300	R20B670250000430
R1X676680G35N00C	R20B670300000430
R1X676680G35N00D	R20B680200000430
R1X676680G35N00L	R20B680250000430
R1X676680G35N050	R20B680300000430
R1X676680G35N200	R21B670200000430
R1X676680G35N300	R21B670250000430

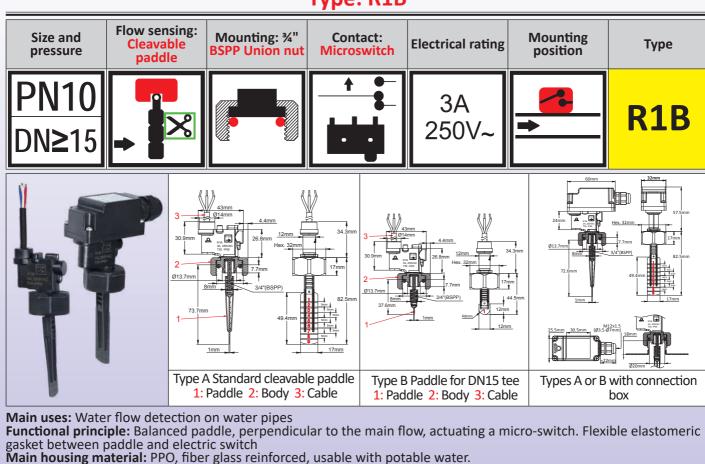
R21B680200000430
R21B680250000430
R21B680300000430
R22B670200500430
R22B670250500430
R22B670300500430
R22B680200500430
R22B680250500430
R22B680300500430
R23B670208000430
R23B670258000430
R23B670308000430
R23B680208000430
R23B680258000430
R23B680380000430
R34B610100000330
R34B610150000330
R34B610180000330
R34B610300000330
R35B600100000330
R35B600150000330
R35B600180000330
R35B600300000330
R36B630240150330
R36B630300150330
R36B630350150330
R3FA670400150330
R3FA670600150330
R3FA670800150330
RAX635680G31N68E
RAX675680G31N68E
RAX6E5680G31N68E

References list

Contact us www.ultimheat.com Cat6-2-3-3

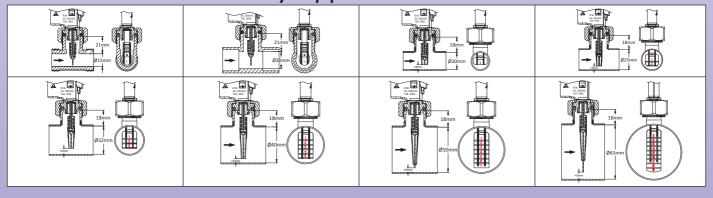
R21B670300000430

Paddle flow switches

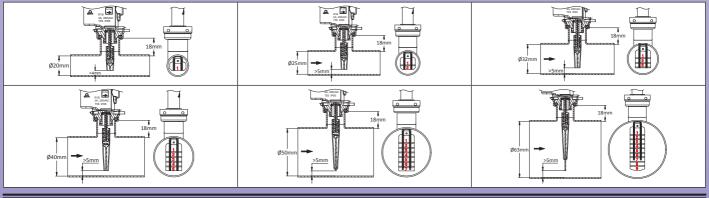

(Micro-switch types)

Contact us www.ultimheat.com Cat6-2-4-1

Paddle flow switches, micro-switch contact, ¾" BSPP union nut. Type: R1B



Main housing material: PPO, fiber glass reinforced, usable with potable water. Paddle material: Polypropylene, resistant to ozone and water disinfection products Paddle gasket: Santoprene, resistant to ozone and water disinfection products


Electrical rating: 3A resistive, 250V AC

Electric contact type: SPDT, open or close by flow rise
Liquids compatibility: For use with clean water and liquids without chemical incompatibility with PPO and Santoprene
Nominal pressure at 20°C: 1MPa (PN10).

Assembly on pipes with 34" union nut

Assembly on pipes with snap-in fitting

Because of permanent improvement of our products, drawings, descriptions,

data sheets are for guidance only and can be modified without prior advice

Average Flow detection values vs pipe I.D. and paddle length (Liters/min)

		Pipe ID (mm)***														
Paddle length	15***		20		25		32		40		50		63			
i singui	*Close	**Open	*Close	**Open	*Close	**Open	*Close	**Open	*Close	**Open	*Close	**Open	*Close	**Open		
1	8.3	7,2	16,3	11,6	37	36	77	68	157	128	260	202	598	412		
1+2					24	18	53	50	108	97	183	160	421	327		
1+2+3							43	38	88	82	168	140	386	286		
1+2+3+4									70	68	130	118	299	241		
1~5									52	50	110	98	253	200		
1~6											90	88	217	170		
1~7											78	77	178	158		
1~8													150	135		
1~9													135	122		

Close by flow rise (L/min) of contact open at no flow position

Nominal diameter: Can be used on 15 to 63 mm internal diameter pipes

The paddle is cleavable and can be cut at various lengths upon pipe diameter. There are cutting lines numbered 1 to 9 every 5mm.

Recommended mounting position: Vertical, with paddle downside. Other positions are possible with a change in the calibration value related to the paddle weight.

Water pipe connection: Supplied with a fiber glass reinforced PA66 G¾"(BSPP) union nut and NBR gasket. Must be used on a BSPP¾ male fitting perpendicular to the main pipe.

Recommended torque: 7Nm.

Version for snap-in mounting (see accessories) has no nut

Liquids temperature range: 5 to 80°C Ambient temperature range: 5 to 50°C

Ingress protection: IP65

Electrical connection: 3 × 0.75 mm² cable, PVC insulation, T80°, style H05VVF. 2 ways connection block on models

with enclosure.

Installation instructions:

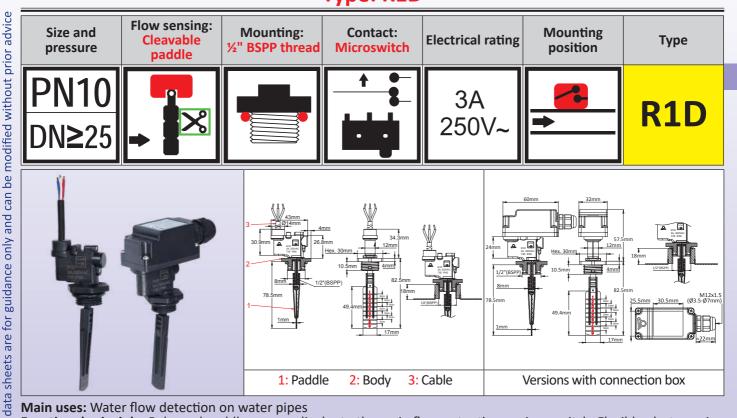
- Check carefully the paddle orientation: The arrow on housing must be exactly parallel to the pipe
- A 5 mm minimum gap must be respected between end of the paddle and tube wall opposite to the ¾" fitting.
- We recommend the use of nozzles of length less than or equal to 18mm between the gasket seat and the inside of the tube and with an inner diameter greater than or equal to 14mm, to avoid blocking of the pallet

Accessories: 3/4" PVC saddles for DN40 to DN100 (OD) PVC pipes, and other fittings: see section 8 of this catalogue. **Options:**

- Cable with connector or terminals, other cable length, nickel plated brass nut.

Main references

	Cable length									
	500mm	1m	2m	With enclosure						
Type A cleavable paddle, ¾" nut	R1BH05073M33N050	R1BH05073M33N100	R1BH05073M33N200	R1BH05073M33N00C						
Type A cleavable paddle, snap-in mounting	R1BH05073S13N050	R1BH05073S13N100	R1BH05073S13N200	R1BH05073S13N00C						
Type B non-cleavable paddle for DN15 × ¾" Tee, ¾" nut	R1BH01235M33N050	R1BH01235M33N100	R1BH01235M33N200	R1BH01235M33N00C						


Update 2024/11/07

Open by flow decrease (L/min) of contact open at no flow position. Average values for indication only. Standard tolerances ±30%

^{***:} With ¾" DN15 brass tee (see accesories) and type B non cleavable paddle

Paddle flow switches, micro-switch contact, ½" BSPP male thread. Q Type: R1D

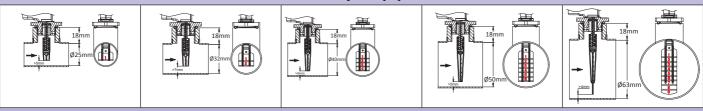
Main uses: Water flow detection on water pipes

Functional principle: Balanced paddle, perpendicular to the main flow, actuating a micro-switch. Flexible elastomeric

gasket between paddle and electric switch

Main housing material: PPO, fiber glass reinforced, usable with potable water. Paddle material: Polypropylene, resistant to ozone and water disinfection products Paddle gasket: Santoprene, resistant to ozone and water disinfection products

Electrical rating: 3A resistive, 250V AC


Electric contact type: SPDT, open or close by flow rise

Liquids compatibility: For use with clean water and liquids without chemical incompatibility with PPO and Santoprene

Nominal pressure at 20°C: 1MPa (PN10)

Because of permanent improvement of our products, drawings, descriptions,

Assembly on pipes

Average Flow detection values vs pipe I.D. and paddle length (Liters/min)

			Pipe ID (mm)												
	Paddle length	20		25		32		40		50		63			
	Ŭ	*Close	**Open	*Close	**Open	*Close	**Open	*Close	**Open	*Close	**Open	*Close	**Open		
	1			34	32	67	63	123	113	225	200	506	424		
	1+2			23	19	50	48	98	93	173	153	389	324		
. [1+2+3					40	38	76	73	143	128	321	271		
	1+2+3+4							61	58	110	106	220	200		
	1~5							49	46	89	84	200	178		
	1~6									73	68	165	150		
	1~7									62	58	152	138		
	1~8											133	123		
	1~9											113	108		

Close by flow rise (L/min) of contact open at no flow position.

Cat6-2-4-5 Contact us www.ultimheat.com

Open by flow decrease (L/min) of contact open at no flow position. Average values for indication only. Standard tolerances ±30%.

Paddle flow switches, micro-switch contact, ½" BSPP male thread, Type: R1D

Nominal diameter: Can be used on 25 to 63 mm internal diameter pipes

The paddle is cleavable and can be cut at various lengths upon pipe diameter. There are cutting lines numbered 1 to 9 every 5mm.

Recommended mounting position: Vertical, with paddle downside. Other positions are possible with a change in the calibration value related to the paddle weight.

Water pipe connection: Male thread $\frac{1}{2}$ "(BSPP) and NBR gasket. Must be used on a BSPP $\frac{1}{2}$ " female fitting perpendicular to the main pipe.

Recommended torque: 7Nm

Liquids temperature range: 5 to 80°C **Ambient temperature range:** 5 to 50°C

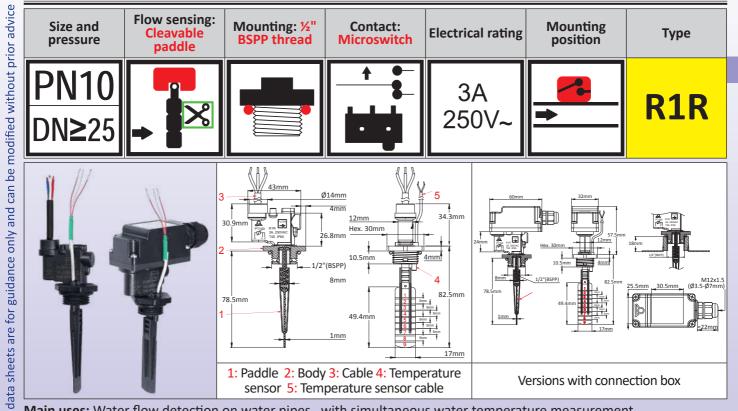
Ingress protection: IP65

Electrical connection: $3 \times 0.75 \text{ mm}^2$ cable, PVC insulation, style H05VVF. 2 ways connection block on models with enclosure.

Installation instructions:

- Check carefully the paddle orientation: The arrow on housing must be exactly parallel to the pipe
- A 5 mm minimum gap must be respected between end of the paddle and tube wall opposite to the ¾" fitting.
- We recommend the use of nozzles of length less than or equal to 18mm between the gasket seat and the inside of the tube and with an inner diameter greater than or equal to 20mm, to avoid blocking of the pallet

Accessories: ½" female PVC saddles for DN40 to DN100 (OD) PVC pipes, and other fittings: see section 8 of this catalogue.


Options: cable with connector or terminals, other cable length, paddle type B (see type R1B)

Main references

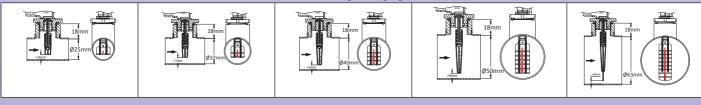
		With enclosure		
	500mm	with enclosure		
Reference	R1DH05079F43N050	R1DH05079F43N100	R1DH05079F43N200	R1DH05079F43N00C

Paddle flow switches, micro-switch contact, ½" BSPP male thread, Q and Pt100 temperature sensor. Type: R1R

Main uses: Water flow detection on water pipes, with simultaneous water temperature measurement Functional principle: Balanced paddle, perpendicular to the main flow, actuating a micro-switch. Flexible elastomeric gasket between paddle and electric switch. Temperature measurement is made by a plastic pocket located under the 1/2" thread

Main housing material: PPO, fiber glass reinforced, usable with potable water. Paddle material: Polypropylene, resistant to ozone and water disinfection products Paddle gasket: Santoprene, resistant to ozone and water disinfection products

Electrical rating: 3A resistive, 250V AC


Electric contact type: SPDT, open or close by flow rise

Liquids compatibility: For use with clean water and liquids without chemical incompatibility with PPO and Santoprene

Nominal pressure at 20°C: 1MPa (PN10)

permanent improvement of our products, drawings, descriptions,

Assembly on pipes

Average Flow detection values vs pipe I.D. and paddle length (Liters/min)

Paddle		Pipe ID (mm)										
length	20		25		32		40		50		63	
iciigui	*Close	**Open	*Close	**Open	*Close	**Open	*Close	**Open	*Close	**Open	*Close	**Open
1			34	32	67	63	123	113	225	200	506	424
1+2			23	19	50	48	98	93	173	153	389	324
1+2+3					40	38	76	73	143	128	321	271
1+2+3+4							61	58	110	106	220	200
1~5							49	46	89	84	200	178
1~6									73	68	165	150
1~7									62	58	152	138
1~8											133	123
1~9											113	108

: Close by flow rise (L/min) of contact open at no flow position.

Nominal diameter: Can be used on 25 to 63 mm internal diameter pipes

The paddle is cleavable and can be cut at various lengths upon pipe diameter. There are cutting lines numbered 1 to 9 every 5mm.

> Cat6-2-4-7 Contact us www.ultimheat.com

^{**:} Open by flow decrease (L/min) of contact open at no flow position. Average values for indication only. Standard tolerances ±30%.

Paddle flow switches, micro-switch contact, ½" BSPP male thread, and Pt100 temperature sensor. Type: R1R

Recommended mounting position: Vertical, with paddle downside. Other positions are possible with a change in the calibration value related to the paddle weight.

Water pipe connection: Male thread $\frac{1}{2}$ "(BSPP) and NBR gasket. Must be used on a BSPP ½" female fitting perpendicular to the main pipe.

Recommended torque: 7Nm

Liquids temperature range: 5 to 80°C **Ambient temperature range:** 5 to 50°C

Ingress protection: IP65 Electrical connection:

Flow switch contact: 3 × 0.75 mm² cable, PVC insulation, style H05VVF. 2 ways connection block on models with

enclosure.

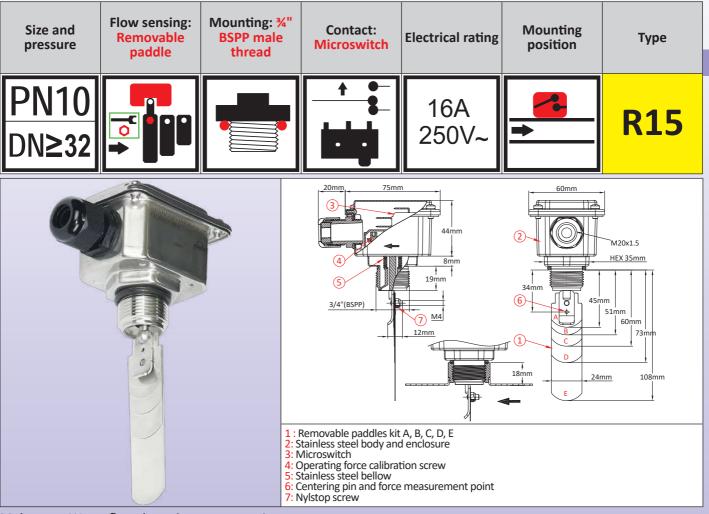
Temperature sensor:

- Pt100 temperature sensor: 3×0.22 mm² cable, nickel plated braided FEP insulation Flow and temperature connection cables length is the same

Installation instructions:

- Check carefully the paddle orientation: The arrow on housing must be exactly parallel to the pipe
- A 5 mm minimum gap must be respected between end of the paddle and tube wall opposite to the ¾" fitting.
- We recommend the use of nozzles of length less than or equal to 18mm between the gasket seat and the inside of the tube and with an inner diameter greater than or equal to 20mm, to avoid blocking of the pallet

Accessories: ½" female PVC saddles for DN40 to DN100 (OD) PVC pipes, and other fittings: see section 8 of this catalogue.


Options: cable with connector or terminals, other cable length, paddle type B (see type R1B)

Main references

		With enclosure		
	500mm	1m	2m	with enclosure
Reference	R1RH05079F43N050	R1RH05079F43N100	R1RH05079F43N200	R1RH05079F43N00C

All stainless steel paddle flow switch, 16A snap action switch, 3/4" male thread

Main uses: Water flow detection on water pipes

Functional principle: Balanced paddle, perpendicular to the main flow, actuating a micro-switch. Flexible stainless

steel bellow between paddle and electric switch.

Enclosure: stainless steel 304, IP69K, IK7.

Mechanism: 100% stainless steel. Paddle material: Stainless steel .

be modified without prior advice

can

features used on these data sheets are for guidance only and

of

Electrical rating: 16A resistive, 4A inductive, 230V alt. 50.000 cycles.

Electric contact type: SPDT, open or close by flow rise.

Compatible liquids: Use in clean water, drinking water and liquids compatible with stainless steel.

Nominal pressure at 20°C: 1MPa (PN10).

Nominal diameter: Can be used on 32mm internal diameter pipes and above.

The paddle has 5 parts of different lengths allowing to use it on various pipe diameters. Tightening is made by a vibration resistant Nylstop nut.

Recommended mounting position: Vertical, with paddle downside. Other positions are possible, but with a change in the calibration value related to the paddle weight.

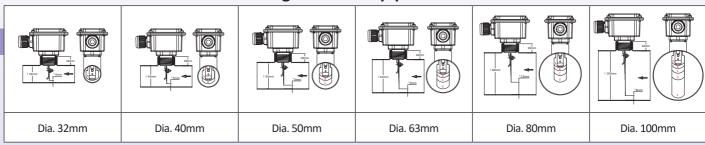
Water pipe connection: Male thread ¾"(BSPP) and NBR gasket. Must be used on a BSPP ¾" female fitting perpendicular to the main pipe.

Recommended torque: 14N.m Liquid temperature range: 5 to 95°C. Ambient temperature range: 5 to 85°C.

Installation instructions:

- Check carefully the paddle orientation: The arrow on housing must be exactly parallel to the pipe.
- A 4 to 5mm minimum gap must be respected between end of the paddle and tube wall opposite to the ¾" fitting.
- We recommend the use of nozzles of length less than or equal to 18mm between the gasket seat and the inside of the tube and with an inner diameter greater than or equal to 32mm, to avoid blocking of the paddle.

Accessories: ¾" female PVC saddles for DN40 to DN100 (OD) PVC pipes, and other fittings: see section 8 of this catalogue.


Options: Special paddles and calibration at specified values.

Note: In case of modification of the paddle set by the user, it is important to tighten correctly, with a minimum torque of 1.2 Nm, the paddle holding M4 Nylstop nut.

Contact us www.ultimheat.com Cat6-2-4-9

All stainless steel paddle flow switch, 16A snap action switch, 3/4" male thread

Mounting on various pipe diameters

Minimum flow detection values versus pipe internal diameter and selected paddles

(Liters per minute, in water at 25°C)

Selected	Calibration	Internal dia. 32 mm		Internal dia. 40 mm			rnal 0 mm					Internal dia. 100 mm	
paddles	force (gr)	*Close	**Open	*Close	**Open	*Close	**Open	*Close	**Open	*Close	**Open	*Close	**Open
	35			20	40								
Α	40			22	41								
	45	21	22	23	44								
	35			20	27	30	63						
A+B	40			22	30	34	67						
	45			23	31	36	75						
	35					27	49	34	63				
A+B+C	40					29	55	38	66				
	45					35	57	40	68				
	35							33	46	60	71	45	81
B+C+D	40							37	54	62	95	56	93
	45							39	56	65	127	85	120
	35											70	140
B+ D+E	40											75	165
	45											81	180

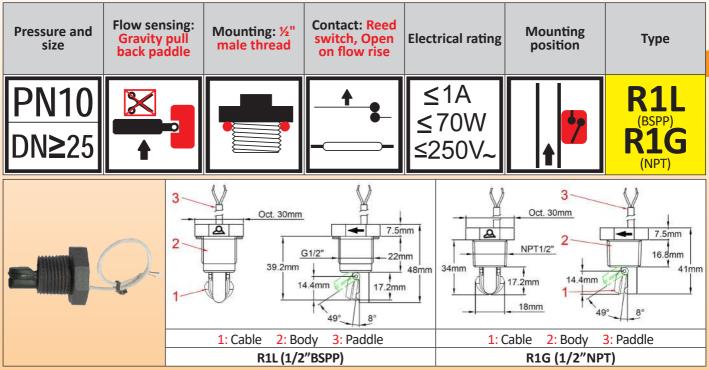
* Close by flow rise (L/min) of contact open at no flow position.

** Open by flow decrease (L/min) of contact open at no flow position. Average values for indication only. Standard tolerances ±30%.

Main references (with a set of 5 paddles)

Calibration	References
35 gr	R15KU23STH3C4000
40 gr	R15KV23STH3C4000
45 gr	R15KW23STH3C4000

Paddle types, reed switch contact


Because of permanent improvement of our products, drawings, descriptions, features used on these data sheets are for guidance only and can be modified without prior advice

Contact us www.ultimheat.com Cat6-2-5-1

Paddle flow switches, reed switch contact, ½" male thread Types: R1L and R1G

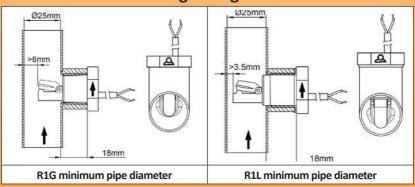
Main uses: The most simple and price effective flow switch of the range. Used for water flow detection on **small size** water pipes. **CONTACT OPENS BY FLOW RISE.**

Functional principle:

Balanced magnetic pallet mounted perpendicular to the flow and activating a reed switch through the wall. The return of the pallet is by gravity, without spring. No seal or liquid can pass between the piping system and the electrical contact. Suitable for corrosive water pools and spas and salination chlorination and bromination systems. Not be used for water containing magnetic particles or high viscosity liquids, which block the movement of the pallet.

Main housing material: Polypropylene, resistant to ozone and water disinfection products, usable with potable water. **Paddle:** Polypropylene, 18mm width

Paddle shaft: Titanium, providing an outstanding corrosion resistance, and improved mechanical live


Electrical rating: Max 1A, Max 70W, Max 250V, resistive load. Use on inductive circuits reduces electrical rating. We recommend to protect the reed switch with contact protection device when used in inductive loads

Electric contact type: Normally close, open by flow rise

Liquids compatibility: For use with clean water and liquids without magnetic particles and without chemical

incompatibility with polypropylene **Nominal pressure at 20°C:** 1MPa (PN10)

Mounting configurations

Average Flow detection values vs pipe I.D. and paddle length (Liters/min)

	Pipe ID (mm)											
Paddle length	25		32		40		50		63			
	*Close	**Open	*Close	**Open	*Close	**Open	*Close	**Open	*Close	**Open		
1	12,7	10,8	17	13,5	28	23	46	42	93	83		

Open by flow rise (L/min) of contact close at no flow position.

Contact us www.ultimheat.com Cat6-2-5-3

^{**} Close by flow decrease (L/min) of contact close at no flow position. Average values for indication only. Standard tolerances ±30%

can be modified without prior advice products, drawings, descriptions, features used on these data sheets are for guidance only and Because of permanent improvement of our

Paddle flow switches, reed switch contact, ½" male thread Types: R1L and R1G

Nominal diameter: Usually used on 25 to 32 mm internal diameter pipes.

The paddle is not cleavable.

Mandatory mounting position: On vertical pipes, with horizontal flow switch axis, and paddle upside. Upstream flow poly.

Water pipe connection: On female ½" fitting.

On the type with BSPP thread, a NBR gasket is supplied with the product. On the type with NPT thread, thread sealant must be used.

Recommended torque: 7Nm

Liquids temperature range: 5 to 80°C **Ambient temperature range:** 5 to 50°C

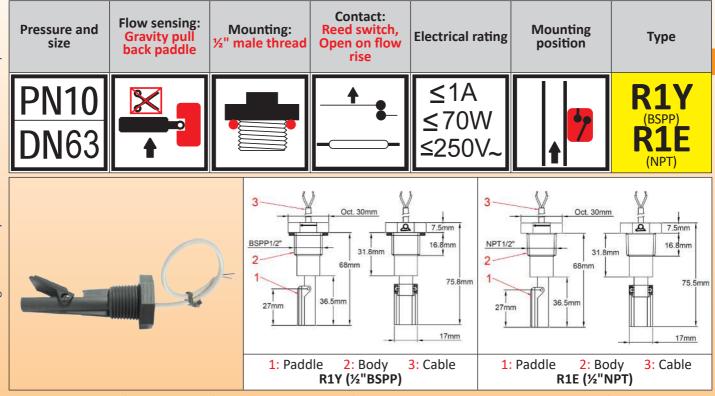
Ingress protection: IP65

Electrical connection: 2 × AWG24 (0.2mm²) cable, PVC insulation, T80°, style UL2464.

Installation instructions:

- Check carefully the paddle orientation: The arrow on housing must be exactly parallel to the pipe
- A 5 mm minimum gap must be respected between end of the paddle and tube wall opposite to the fitting.
- We recommend the use of nozzles of length less than or equal to 18mm between the gasket seat and the inside of the tube and with an inner diameter greater than or equal to 20 mm, to avoid blocking of the pallet

Accessories: ½" PVC saddles for DN40 to DN100 (OD) PVC pipes, and other fittings: see section 8 of this catalogue.


Options: cable with connector or terminals, other cable length.

Main references

Thread	Cable length							
Tillead	500mm	1m	2m					
½" BSPP	R1L611536F45P050	R1L611536F45P100	R1L611536F45P200					
½" NPT	R1G611534F25P050	R1G611534F25P100	R1G611534F25P200					

Paddle flow switches, reed switch contact, ½" male thread, extended paddle arm. Types: R1Y and R1E

Main uses: Cost effective simple flow switch developed for swimming pool application. For water flow detection on **vertical dia 63mm** water pipes, upstream flow

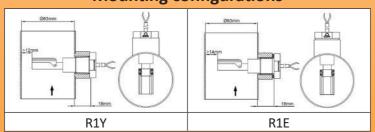
Functional principle:

Balanced magnetic pallet mounted perpendicular to the flow and activating a reed switch through the wall. The return of the pallet is by gravity, without spring. No seal or liquid can pass between the piping system and the electrical contact. No metal parts (shaft, spring) in contact with the liquid. Suitable for corrosive water pools and spas and salination chlorination and bromination systems. Not be used for water containing magnetic particles or high viscosity liquids, which block the movement of the pallet.

Main housing material: Polypropylene, resistant to ozone and water disinfection products, usable with potable water.

Paddle: Polypropylene, 17 mm width

Paddle shaft: Polypropylene


Electrical rating: Max 1A, Max 70W, Max 250V, resistive load. Use on inductive circuits reduces electrical rating. We recommend to protect the reed switch with contact protection device when used in inductive loads

Electric contact type: Normally close, open by flow rise

Liquids compatibility: For use with clean water and liquids without magnetic particles and without chemical

incompatibility with polypropylene **Nominal pressure at 20°C:** 1MPa (PN10)

Mounting configurations

Average Flow detection values

	Pipe ID (mm)											
Paddle length	20		2	25		2	40		50		63	
Ŭ	*Close	**Open	*Close	**Open	*Close	**Open	*Close	**Open	*Close	**Open	*Close	**Open
1											33	38

Close by flow decrease (L/min) of contact close at no flow position. Average values for indication only. Standard tolerances ±30%.

Contact us www.ultimheat.com Cat6-2-5-5

^{*} Open by flow rise (L/min) of contact close at no flow position.

can be modified without prior advice Because of permanent improvement of our products, drawings, descriptions, features used on these data sheets are for guidance only and

Paddle flow switches, reed switch contact, ½" male thread, extended paddle arm. Types: R1Y and R1E

Nominal diameter: Can be used on 55 to 63 mm internal diameter pipes.

The paddle is not cleavable.

Mandatory mounting position: On vertical pipes, with horizontal flow switch axis, and paddle upside. Upstream flow poly.

Water pipe connection: On female ½" fitting.

On the type with BSPP thread, a NBR gasket is supplied with the product. On the type with NPT thread, thread sealant must be used.

Recommended torque: 7Nm

Liquids temperature range: 5 to 80°C **Ambient temperature range:** 5 to 50°C

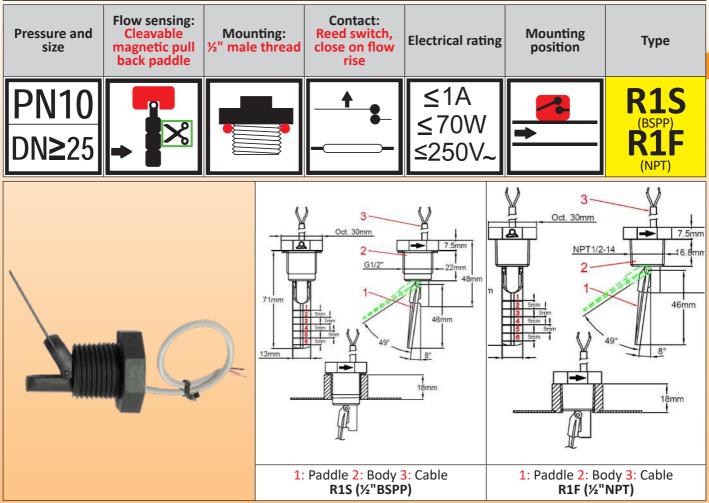
Ingress protection: IP65

Electrical connection: 2 × AWG24 (0.2mm²) cable, PVC insulation, T80°, style UL2464.

Installation instructions:

- Check carefully the paddle orientation: The arrow on housing must be exactly parallel to the pipe
- A 5 mm minimum gap must be respected between end of the paddle and tube wall opposite to the fitting.
- We recommend the use of nozzles of length less than or equal to 18mm between the gasket seat and the inside of the tube and with an inner diameter greater than or equal to 20 mm, to avoid blocking of the pallet

Accessories: ½" PVC saddles for DN40 to DN100 (OD) PVC pipes, and other fittings: see section 8 of this catalogue.


Options: cable with connector or terminals, other cable length.

Main references

Thread	Cable length							
Thread	500mm	1m	2m					
½" BSPP	R1Y622768F45P050	R1Y622768F45P100	R1Y622768F45P200					
½" NPT	R1E622768F25P050	R1E622768F25P100	R1E622768F25P200					

Paddle flow switches, reed switch contact, ½" male thread, long paddle. Types: R1S and R1F

Main uses: The most simple flow switch with magnetic pull-back. Recommended mounting position is on horizontal pipes, but can be mounted in any position. For water flow detection on **dia. 25 to 63mm** water pipes **Functional principle:**

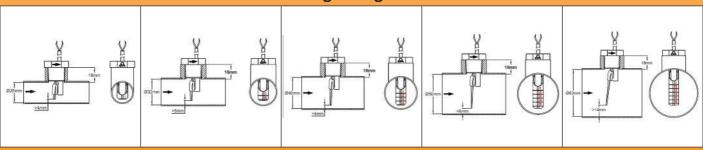
Balanced magnetic pallet mounted perpendicular to the flow and activating a reed switch through the wall. The return of the pallet is made by magnetic action, without spring. No seal or liquid can pass between the piping system and the electrical contact. Suitable for corrosive water pools and spas and salination chlorination and bromination systems. Must not be used for water containing magnetic particles or high viscosity liquids, which block the movement of the pallet.

Adjustment:

- By cleaving the paddle

Main housing material: Polypropylene, resistant to ozone and water disinfection products, usable with potable water. Paddle: Polypropylene, 13 mm width

Paddle shaft: Titanium, providing an outstanding corrosion resistance, and improved mechanical live


Electrical rating: Max 1Å, Max 70W, Max 250V, resistive load. Use on inductive circuits reduces electrical rating. We recommend to protect the reed switch with contact protection device when used in inductive loads

Electric contact type: Normally open, closes by flow rise

Liquids compatibility: For use with clean water and liquids without magnetic particles and without chemical incompatibility with polypropylene and titanium

Nominal pressure at 20°C: 1MPa (PN10)

Mounting configurations

be modified without prior advice features used on these data sheets are for guidance only and can of Because of permanent improvement

Contact us www.ultimheat.com Cat6-2-5-7

Paddle flow switches, reed switch contact, ½" male thread, long paddle. Types: R1S and R1F

0

Average Flow detection values.

	D. dalla		Pipe ID (mm)													
	Paddle length	20		25 Not suitable for R1S (BSPP)		32		4	0	50		63				
		*Close	**Open	*Close	**Open	*Close	**Open	*Close	**Open	*Close	**Open	*Close	**Open			
	1			26	6	38	15	79	30	127	58	172	108			
Ī	1+2					28	11	63	18	83	37	143	73			
	1+2+3					20	7	49	10	63	27	105	53			
	1+2+3+4							19	7	57	22	93	47			
	1~5									48	15	72	31			
	1~6									48	9	66	23			

^{*} Close by flow rise (L/min) of contact open at no flow position.

Nominal diameter: Can be used on 25 to 63 mm internal diameter pipes

The paddle is cleavable and can be cut at various lengths upon pipe diameter. There are cutting lines numbered 1 to 6 every 5mm.

Recommended mounting position: On horizontal pipes. Mounting in other positions slightly modify the calibration **Water pipe connection:** On female ½" fitting. On the type with BSPP thread, a NBR gasket is supplied with the product. On the type with NPT thread, thread sealant must be used.

Recommended torque: 7Nm

Liquids temperature range: 5 to 80°C **Ambient temperature range:** 5 to 50°C

Ingress protection: IP65

Electrical connection: 2 × AWG24 (0.2mm²) cable, PVC insulation, T80°, style UL2464.

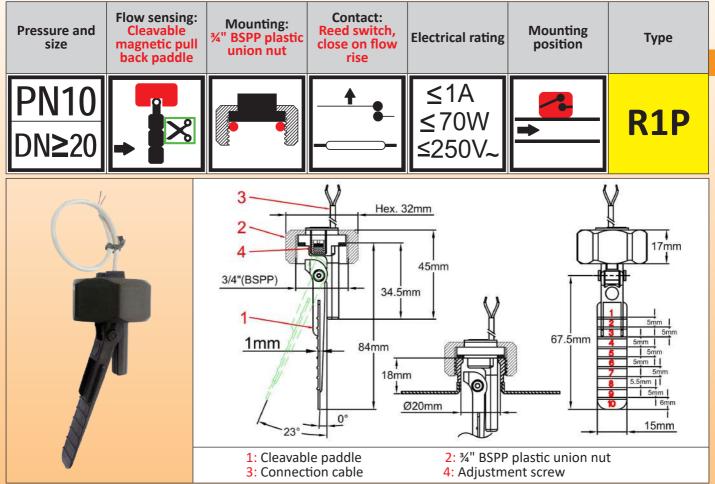
Installation instructions:

- Check carefully the paddle orientation: The arrow on housing must be exactly parallel to the pipe
- A 5 mm minimum gap must be respected between end of the paddle and tube wall opposite to the fitting.
- We recommend the use of nozzles of length less than or equal to 18mm between the gasket seat and the inside of the tube and with an inner diameter greater than or equal to 20 mm, to avoid blocking of the pallet

Accessories: ½" PVC saddles for DN40 to DN100 (OD) PVC pipes, and other fittings: see section 8 of this catalogue.

Options: cable with connector or terminals, other cable length.

Main references


Thread		Cable length									
Tilleau	500mm	1m	2m								
½" BSPP	R1S6D4771F45P050	R1S6D4771F45P100	R1S6D4771F45P200								
½" NPT	R1F6D4766F25P050	R1F6D4766F25P100	R1F6D4766F25P200								

eperanse of permanent improvement of our products, drawings, descriptions, features used on these data sheets are for guidance only and can be modified without prior advice

^{**} Open by flow decrease (L/min) of contact open at no flow position. Average values for indication only. Standard tolerances ±30%.

Paddle flow switches, reed switch contact, ¾"union nut, slim design. 🔍 Type: R1P

Main uses: The most simple flow switch with magnetic pull-back. Recommended mounting position is on horizontal pipes, but can be mounted in any position. For water flow detection on dia 25 to 100mm water pipes **Functional principle:**

Balanced magnetic pallet mounted perpendicular to the flow and activating a reed switch through the wall. The return of the pallet is made by magnetic action, without spring. No seal or liquid can pass between the piping system and the electrical contact. Suitable for corrosive water pools and spas and salination chlorination and bromination systems. Must not be used for water containing magnetic particles or high viscosity liquids, which block the movement of the pallet.

Adjustment: there is 2 adjustment ways on this model

- By cleaving the paddle

be modified without prior advice

can

features used on these data sheets are for guidance only and

- By means of the adjustment screw located under the protective cover. This setting must be carried out only by professional, qualified and trained personnel, as a too low setting can produce an insufficient pull-back force and malfunction. This adjustment is designed for single use and can be sealed.

Main housing material: Polypropylene, resistant to ozone and water disinfection products, usable with potable water. Union nut material: High mechanical strength fiber glass reinforced PA66.

The type without nut is designed for snap-in assembly on plastic and stainless steel fittings. (see section 8 of this catalogue)

Paddle: Polypropylene, 15 mm width

Paddle shaft: Titanium, providing an outstanding corrosion resistance, and improved mechanical live

Electrical rating: Max 1A, Max 70W, Max 250V, resistive load. Use on inductive circuits reduces electrical rating. We recommend to protect the reed switch with contact protection device when used in inductive loads

Electric contact type: Normally open, closes by flow rise

Liquids compatibility: For use with clean water and liquids without magnetic particles and without chemical incompatibility with polypropylene and titanium

Nominal pressure at 20°C: 1MPa (PN10).

Because of permanent **Mounting configurations** Cat6-2-5-9 Contact us www.ultimheat.com

products, drawings, descriptions, features used on these data sheets are for guidance only and can be modified without prior advice

Because of permanent improvement of our

Average Flow detection values

								Pipe II) (mm)						
	addle ength	2	.0	2	5	3	2	4	0	5	0	6	3	10	00
	Ü	*Close	**Open	*Close	**Open	*Close	**Open	*Close	**Open	*Close	**Open	*Close	**Open	*Close	**Open
	1	(2,5) 3,7 (5.3)	(2,1) 3,3 (4,8)	(5,8) 7,7 (16)	(4,7)7,2 (14)	(13) 18 (27)	(11) 16 (25)	(23) 28 (53)	(20) 25 (43)	(49) 65 (78)	(35) 53 (65)	(113) 138 (237)	(75) 93 (142)	(217) 258 (420)	(187) 217 (330)
	1+2					(8,1) 11 (19)	(6,5)10 (18)	(18) 21(35)	(16) 18 (32)	(30) 37 (65)	(26) 33 (53)	(63) 95 (175)	(52) 78 (100)	(158) 208 (350)	(140) 183 (280)
	1~3					(5,7) 9 (16)	(4,8) 8 (14)	(13) 16 (28)	(10) 13 (25)	(21) 28 (42)	(18) 25 (30)	(47) 70(125)	(37) 52 (92)	(123) 157 (262)	(109) 135 (237)
	1~4							(7,2)13 (22)	(5)10 (19)	(17) 22 (35)	(14) 19 (32)	(38) 48 (87)	(32 38 (67)	(108) 130 (223)	(93) 108 (197)
	1~5									(13) 18 (28)	(4,6) 15 (26)	(28) 40 (62)	(25) 33 (50)	(83) 98 (183)	(73) 87 (163)
	1~6									(9,2) 15 (24)	(7,8) 12 (22)	(21) 30 (53)	(18) 25 (43)	(73) 80 (150)	(63) 73 (137)
	1~7									(7,1) 11 (23)	(5,4) 8 (18)	(17) 22 (41)	(13) 18 (37)	(58) 73 (130)	(53) 68 (120)
	1~8											(13) 19 (35)	(10) 14 (32)	(49) 63 (98)	(43) 55 (88)
	1~9											(10) 15 (28)	(7) 12 (25)	(43) 56 (90)	(38) 48 (85)
-	1~10													(42) 48 (84)	(37) 42 (73)

Close by flow rise (L/min) of contact open at no flow position.

Nominal diameter: Can be used on 25 to 100 mm internal diameter pipes

The paddle is cleavable and can be cut at various lengths upon pipe diameter. There are cutting lines numbered 1 to 10 every 5mm.

Recommended mounting position: On horizontal pipes. Mounting in other positions slightly modify the calibration

Water pipe connection: On male ¾" fitting. NBR gasket is supplied with the product.

Recommended torque: 7Nm

Liquids temperature range: 5 to 80°C Ambient temperature range: 5 to 50°C

Ingress protection: IP65

Electrical connection: 2 × AWG24 (0.2mm²) cable, PVC insulation, T80°, style UL2464.

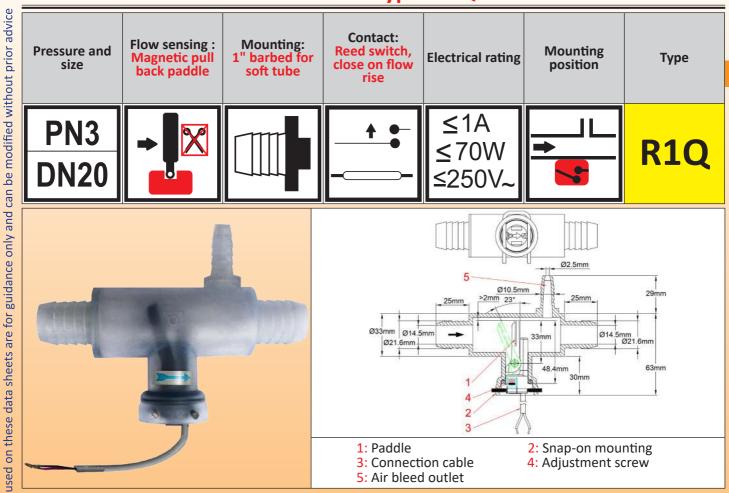
Installation instructions:

- Check carefully the paddle orientation: The arrow on housing must be exactly parallel to the pipe
- A 5 mm minimum gap must be respected between end of the paddle and tube wall opposite to the fitting.
- We recommend the use of nozzles of length less than or equal to 18mm between the gasket seat and the inside of the tube and with an inner diameter greater than or equal to 20 mm, to avoid blocking of the pallet

Accessories: %" male PVC saddles for DN40 to DN100 (OD) PVC pipes, and other fittings: see section 8 of this

Options: cable with connector or terminals, other cable length, nickel plated 3/4" BSPP union nut.

Main references


Calibration	Mounting		Cable length	
Calibration	iviounting	500mm	1m	2m
Low span end (1gr)	¾" BSPP Union nut	R1P616884G35P050	R1P616884G35P100	R1P616884G35P200
Low span end (1gr)	No nut, for snap-in mounting	R1P616884S15P050	R1P616884S15P100	R1P616884S15P200
Middle span (2grs)	¾" BSPP Union nut	R1P626884G35P050	R1P626884G35P100	R1P626884G35P200
Middle span (2grs)	No nut, for snap-in mounting	R1P626884S15P050	R1P626884S15P100	R1P626884S15P200
High span end (4grs)	¾" BSPP Union nut	R1P646884G35P050	R1P646884G35P100	R1P646884G35P200
High span end (4grs)	No nut, for snap-in mounting	R1P646884S15P050	R1P646884S15P100	R1P646884S15P200

Cat6-2-5-10 Contact us www.ultimheat.com

^{**} Open by flow decrease (L/min) of contact open at no flow position. Average values for indication only. Standard tolerances ±30% Values upon (low span end), middle span and (high span end) calibration.

Paddle flow switches, reed switch contact, inside barbed tee for 1" Q soft tube. Type: R1Q

Main uses: Tee equipped with paddle flow switch, for spas and swimming pools applications, mounting on 1" (20 to 21mm ID) soft PVC tubes, adjustable setting.

Used on water circulation circuits to detect the passage of water or filter clogging and avoid dry running. Recommended mounting position is on horizontal pipes, but can be mounted in any position allowing an efficient air bleed.

Functional principle: Balanced magnetic pallet mounted perpendicular to the flow and activating a reed switch through the wall. The return of the pallet is by made by magnetic action, without spring. No seal or liquid can pass between the piping system and the electrical contact. Suitable for corrosive water pools and spas and salination chlorination and bromination systems. Must not be used for water containing magnetic particles or high viscosity liquids, which block the movement of the pallet.

Adjustment: By means of the adjustment screw located under the protective cover. This setting must be carried out only by professional, qualified and trained personnel, as a too low setting can produce an insufficient pull-back force and malfunction. This adjustment is designed for single use and can be sealed.

Main housing material: Polypropylene, resistant to ozone and water disinfection products, usable with potable water.

Tee material: PVC

permanent

Because of

Paddle: Polypropylene, 15 mm width

Paddle shaft: Titanium, providing an outstanding corrosion resistance, and improved mechanical live

Electrical rating: Max 1A, Max 70W, Max 250V, resistive load. Use on inductive circuits reduces electrical rating. We recommend to protect the reed switch with contact protection device when used in inductive loads

Electric contact type: Normally open, closes by flow rise

Liquids compatibility: For use with clean water and liquids without magnetic particles and without chemical incompatibility with polypropylene and titanium

Nominal pressure at 20°C: 0.3MPa (PN3).

Average flow detection values (Liters/min)

Calibration	*Close	**Open
Low span end (1gr)	4,3	3,7
Middle span (2grs)	5,7	4,8
High span end (4grs)	7,4	6,9

Close by flow rise (L/min) of contact open at no flow position

Cat6-2-5-11 Contact us www.ultimheat.com

Open by flow decrease (L/min) of contact open at no flow position. Average values for indication only. Standard tolerances ±30%.

2

Paddle flow switches, reed switch contact, inside barbed tee for 1" soft tube. Type: R1Q

Liquids temperature range: 5 to 45°C **Ambient temperature range:** 5 to 45°C

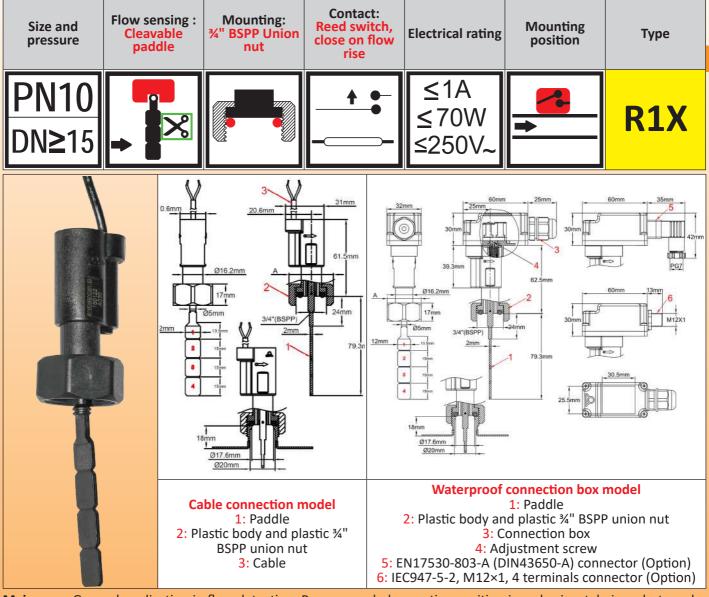
Ingress protection: IP65

Electrical connection: 2 × AWG24 (0.2mm²) cable, PVC insulation, T80°, style UL2464.

Installation instructions: Water circuit in spas and pools can contain air bubbles, it is important to prevent them stagnate in the unit of measure and originate false flow measurement. Therefore the air bleeding orifice must be

located above and connected.

Options: cable with connector or terminals, other cable length.


References

Calibration		Cable length										
Calibration	500mm	1m	2m	3m								
Low span end (1gr)	R1Q613348S15P050	R1Q613348S15P100	R1Q623348S15P200	R1Q613348S15P300								
Middle span (2grs)	R1Q623348S15P050	R1Q623348S15P100	R1Q623348S15P200	R1Q623348S15P300								
High span end (4grs)	R1Q643348S15P050	R1Q643348S15P100	R1Q643348S15P200	R1Q643348S15P300								

eranse of permanent improvement of our products, drawings, descriptions, features used on these data sheets are for guidance only and can be modified without prior advice

Paddle flow switches, reed switch contact, external body. Type: R1X

Main uses: General application in flow detection. Recommended mounting position is on horizontal pipes, but can be mounted in any position. For water flow detection on dia 15 to 100mm water pipes

Functional principle:

Balanced magnetic pallet mounted perpendicular to the flow and activating a reed switch through the wall. The return of the pallet is by made by magnetic action, without spring. No seal or liquid can pass between the piping system and the electrical contact. Suitable for corrosive water pools and spas and salination chlorination and bromination systems. Must not be used for water containing magnetic particles or high viscosity liquids, which block the movement of the pallet.

Adjustment:

- By cleaving the paddle
- Fine adjustment by screw driver on internal dial (on models with connection box only)

Paddle shaft: Titanium, providing an outstanding corrosion resistance, and improved mechanical live. Suitable for corrosive water pools and spas and salination chlorination and bromination systems

Main housing material: PPO, fiber glass reinforced for improved pressure resistance, usable with potable water.

Paddle: PPO, 12 mm width, can be cleaved into 4 sections numbered 1 to 4 for pipe diameter adjustment.

Pipe mounting: Fiber glass reinforced union nut, ¾" BSPP, mounting on ¾" BSPP male fitting with gasket.

Recommended Torque: 7±1Nm

Gasket: NBR

Electrical rating: Max 1A, Max 70W, Max 250V, resistive load. Use on inductive circuits reduces electrical rating. We recommend to protect the reed switch with contact protection device when used in inductive loads

Electric contact type: Normally open, closes by flow rise

Liquids compatibility: For use with clean water and liquids without magnetic particles and without chemical incompatibility with PPO and titanium

Nominal pressure at 20°C: 1MPa (PN10)

prior advice

Secause of permanent improvement of our

Paddle flow switches, reed switch contact, external body. Type: R1X

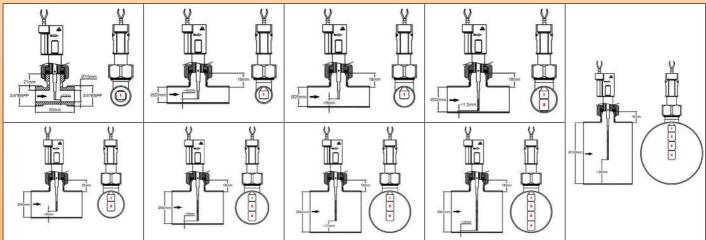
Liquids temperature range: 5 to 100°C **Ambient temperature range:** 5 to 80°C

Ingress protection: IP65

Calibration tolerances: +/-15% (on paddle operating force at end of paddle 1)

Electrical connection: 4 possible models:

- 2 × AWG24 (0.2mm²) cable, PVC insulation, T80°, style UL2464.
- Waterproof connection box with 2.5mm² connection block, M16×1.5 cable gland
- Waterproof connection box with EN17530-803-A (DIN43650-A) connector (MOQ apply for this model)
- Waterproof connection box with IEC947-5-2, M12×1, 4 terminals connector (MOQ apply for this model) **Installation instructions:**


Charles and fully the property of

- Check carefully the paddle orientation: The arrow on housing must be exactly parallel to the pipe
- A 5 mm minimum gap must be respected between end of the paddle and tube wall opposite to the fitting.
- We recommend the use of nozzles of length less than or equal to 18mm between the gasket seat and the inside of the tube and with an inner diameter greater than or equal to 13.5 mm, to avoid blocking of the pallet

Accessories: 3/4" male PVC saddles for DN40 to DN100 (OD) PVC pipes, and other fittings: see section 8 of this catalogue.

Options (MOQ apply): cable with connector or terminals, other cable length, nickel plated ¾" BSPP union nut Important notice: In the case of plastic pipes (PVC, PE), the DN (nominal diameter) corresponds to the outside diameter and wall thickness is variable depending on the application. This must be taken into account to avoid blocking the paddle. In the case of metal pipes, the inner diameter corresponds to the DN. Flow values data are for tubes whose internal diameter corresponds to DN.

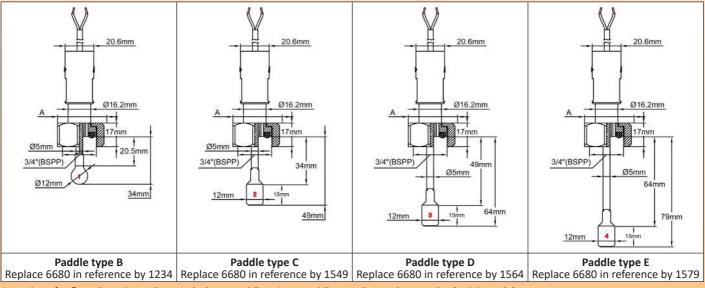
Pipe mounting configurations

Average flow detection values (Liters/min)

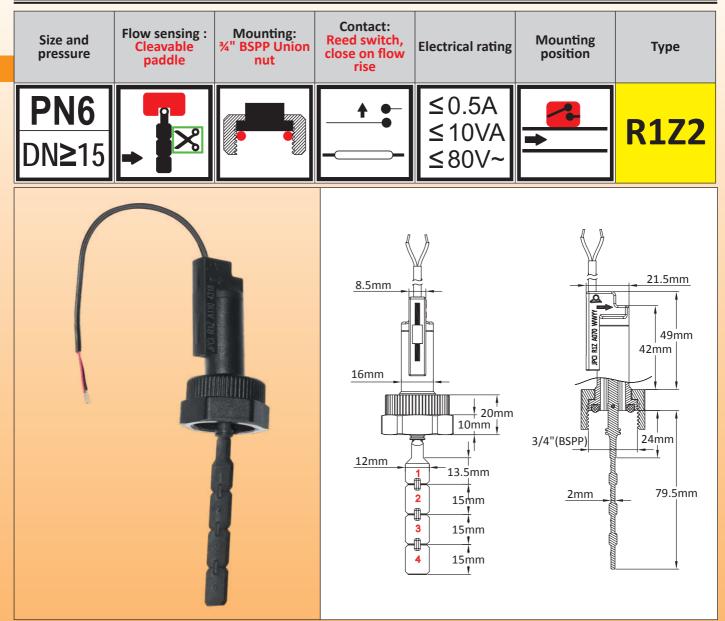
								Pipe ID	(mm)							
Paddle length	1	5	20		2	5	3	2	4	0	5	0	6	3	100	
iciigui	*Close	**Open	*Close	**Open	*Close	**Open	*Close	**Open	*Close	**Open	*Close	**Open	*Close	**Open	*Close	**Open
1-m	2,7	2,3	4,8	4,5	13	11	22	20	38	35	67	47	167	112	472	317
1-H	4,3	3,3	7,3	6,5	18	17	29	27	53	48	83	72	218	142	616	401
1-M	5,5	3,2	14	12	25	22	38	35	67	60	132	108	262	202	740	571
1+2-m									20	18	37	32	68	52	192	155
1+2-H									30	28	53	43	88	72	248	203
1+2-M									40	37	67	63	123	115	347	324
1~3-m											22	20	37	33	125	108
1~3-H											34	32	63	50	176	165
1~3-M											46	43	77	73	233	217
1~4-m													27	24	88	72
1~4-H													43	40	140	132
1~4-M													58	55	180	167

m= calibration at min span H= calibration at Half span M= calibration at Max span * Close by flow rise (L/min) of contact open at no flow position

^{**} Open by flow decrease (L/min) of contact open at no flow position. Average values for indication only. Standard tolerances ±15%.


Paddle flow switches, reed switch contact, external body. Type: R1X

Main references (With type A cleavable paddle)


Calibration	Electrical connection													
(Calibration force ±15%, measured at end of paddle N°1)	500 mm cable	2 m Cable	3m Cable	Waterproof connection box with M16×1.5 cable gland	Waterproof connection box with 4 pins, M12×1	Waterproof connection box with DIN 43650-A connector								
Low span end: 3gr	R1X636680G35N050	R1X636680G35N200	R1X636680G35N300	R1X636680G35N00C	R1X636680G35N00L	R1X636680G35N00D								
Middle span: 7gr	R1X676680G35N050	R1X676680G35N200	R1X676680G35N300	R1X676680G35N00C	R1X676680G35N00L	R1X676680G35N00D								
High span end: 14gr	R1X6E6680G35N050	R1X6E6680G35N200	R1X6E6680G35N300	R1X6E6680G35N00C	R1X6E6680G35N00L	R1X6E6680G35N00D								

Other paddles (Non cleavable models)

Consult us for flow detection values with these paddles. OEM paddles can be made on order (MOQ apply).

Main uses: <u>Large quantities applications</u> in flow detection in low voltage electronic circuits. The most economical model. Recommended mounting position is on horizontal pipes. Can be mounted in any position with a small drift in the calibration because of the paddle weight. Can be used on **15 to 100mm diameter** water pipes.

Functional principle:

Balanced magnetic pallet mounted perpendicular to the flow and activating a reed switch through the wall. The return of the paddle is made by magnetic action, without spring. No seal or liquid can pass between the piping system and the electrical contact. Suitable for corrosive water pools and spas and salination chlorination and bromination systems. Must not be used for water containing magnetic particles or high viscosity liquids, which block the movement of the paddle.

Adjustment: By cleaving the paddle. These flow switches are available with 6 factory setting calibrations, corresponding to operating forces of 0.08N (8gr), 0.09N (9gr), 0.11N (11gr), 0.14N (14gr), 0.18N (18g), 0.29N (29gr). Values are measured at the end of paddle N°1.

Paddle shaft: Titanium (Patented), provides an outstanding corrosion resistance (contrary to stainless steel), does not break (contrary to ceramic shafts models), and improved mechanical live. Suitable for corrosive water pools and spas and salination chlorination and bromination systems.

Main housing material: PPO, fiber glass reinforced for improved pressure resistance, usable with potable water. **Paddle:** PPO, 12 mm width, can be cleaved into 4 sections numbered 1 to 4 for pipe diameter adjustment.

Pipe mounting: Fiber glass reinforced union nut, ¾" BSPP, mounting on ¾" BSPP male fitting with gasket. Recommended torque: 7±1Nm.

Gasket: NBR. (A special silicone gasket, available on request, has been developed for water with metallic particles to limit their access to magnetic parts).

Electrical rating: Max 0.5A, Max 10VA, Max 80V, resistive load. Use on inductive circuits reduces electrical rating. We recommend to protect the reed switch with contact protection device when used in inductive loads.

drawings, descriptions, features used on these data sheets are for guidance only and can be modified without prior advice

Paddle flow switches, reed switch contact, low voltage simplified model. Type: R1Z2

Electric contact type: Normally open, closes by flow rise.

Liquid compatibility: For use with clean water and liquids without magnetic particles and without chemical

incompatibility with PPO and titanium. **Nominal pressure at 20°C:** 0.6MPa (PN6). **Liquid temperature range:** 5 to 95°C. **Ambient temperature range:** 5 to 80°C.

Ingress protection: IP65. Calibration tolerances: +/-15%

Electrical connection: 2 × AWG26 (0.15mm²) cable, PVC insulation, T80°C.

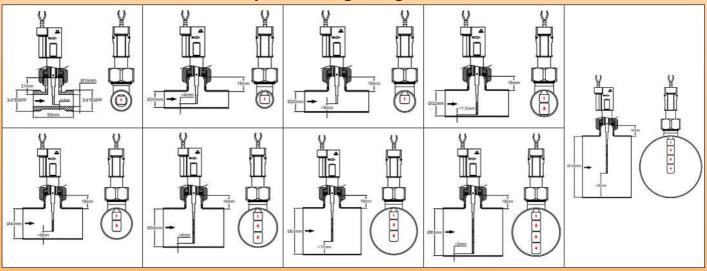
Installation instructions:

permanent improvement of our products, drawings, descriptions, features used on these data sheets are for

Because of

- Check carefully the paddle orientation: The arrow on housing must be exactly parallel to the pipe.

- A 4 to 5 mm minimum gap must be respected between end of the paddle and tube wall opposite to the fitting.


- We recommend the use of nozzles of length less than or equal to 18mm between the gasket seat and the inside of the tube and with an inner diameter greater than or equal to 13.5 mm, to avoid blocking of the paddle

Accessories: 3/4" male PVC saddles for DN40 to DN100 (Outside dimeter) PVC pipes, and other fittings: see section 8 of this catalogue.

Options (MOQ apply): cable with connector or terminals, other cable length,

Important notice: In the case of plastic pipes (PVC, PE), the DN (nominal diameter) corresponds to the outside diameter and wall thickness is variable depending on the application. This must be taken into account to avoid blocking the paddle. In the case of metal pipes, the inner diameter corresponds to the DN. Flow value data are for tubes whose internal diameter corresponds to DN.

Pipe mounting configurations

Average flow detection values (Liters/min)

	Operating						Pipe IC	(mm)				
	force	Paddle number	1	5	2	0	2	5	3	2	4	0
	(g)		*Close	**Open	*Close	**Open	*Close	**Open	*Close	**Open	*Close	**Open
	8	1	5.1	4	8.3	7.3	17 L/min	15	32	29		
	9	1	5.8	4.1	10	8.3	18	17	36	35		
	11	1	6.3	4.4	11.5	9.5	20	18	42	36		
	14	1	7.3	4.8	12.5	10	22	21	46	40		
	18	1	8.1	5.4	14	11	24	23	50	44		
	29	1	8.8	5.6	15.5	12	27	26	57	48		
	8	1+2									30	26
	9	1+2									32	29
	11	1+2									36	32
	14	1+2									38	34
	18	1+2									46	35
	29	1+2									50	43
				· · · · · · · · · · · · · · · · · · ·								

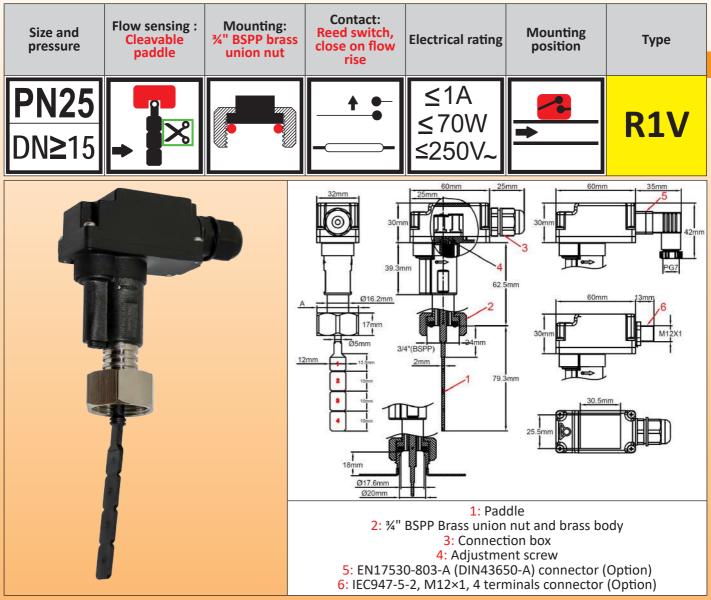
* Close by flow rise (L/min) of contact open at no flow position. ** Open by flow decrease (L/min) of contact open at no flow position. Average values for indication only. Standard tolerances ±15%

Contact us www.ultimheat.com Cat6-2-5-17

Operating					Pipe II) (mm)			
force	Paddle number	5	0	6	3	8	0	10	00
(g)		*Close	**Open	*Close	**Open	*Close	**Open	*Close	**Open
8	1+2+3	42.2	33.4	56.9	37.4				
9	1+2+3	48.6	37	66.85	40.45				
11	1+2+3	53.75	44.5	73.8	46.8				
14	1+2+3	57.7	44.5	79.3	48.5				
18	1+2+3	61.4	50.4	85.5	57.9				
29	1+2+3	66.8	58.4	95.1	66.1				
8	1+2+3+4					98.2	40.8	156.7	53.5
9	1+2+3+4					111.85	46.2	181.55	51.9
11	1+2+3+4					118.8	46.4	191.4	58.5
14	1+2+3+4					144.45	59.1	211.2	60.4
18	1+2+3+4					150.6	60.2	223.95	64.9
29	1+2+3+4					162.3	66.4	235.1	74.2

^{*} Close by flow rise (L/min) of contact open at no flow position.

Main references


Calibration (Calibration force ±15%, measured at end of paddle N°1)	500mm cable	2m cable	3m cable
8 gr	R1Z286680G35N050	R1Z286680G35N200	R1Z286680G35N300
9 gr	R1Z296680G35N050	R1Z296680G35N200	R1Z296680G35N300
11 gr	R1Z2B6680G35N050	R1Z2B6680G35N200	R1Z2B6680G35N300
14 gr	R1Z2E6680G35N050	R1Z2E6680G35N200	R1Z2E6680G35N300
19 gr	R1Z2J6680G35N050	R1Z2J6680G35N200	R1Z2J6680G35N300
29 gr	R1Z2S6680G35N050	R1Z2S6680G35N200	R1Z2S6680G35N300

OEM paddles can be made on order (MOQ apply).

st** Open by flow decrease (L/min) of contact open at no flow position. Average values for indication only. Standard tolerances $\pm 15\%$

Paddle flow switches, reed switch contact, external brass body. Type: R1V

Main uses: General application in flow detection. Recommended mounting position is on horizontal pipes, but can be mounted in any position. For liquids flow detection on dia. 15 to 100mm pipes. Body and union nut in brass for improved mechanical strength and pressure resistance. Connection box with terminal block or connectors, and detection point adjustment screw

Functional principle: Balanced magnetic pallet mounted perpendicular to the flow and activating a reed switch through the wall. The return of the pallet is by made by magnetic action, without spring. No seal or liquid can pass between the piping system and the electrical contact. Usable for industrial applications in non-corrosive liquids. Must not be used for liquids containing magnetic particles or high viscosity liquids, which block the movement of the pallet. **Adjustment:**

- By cleaving the paddle
- Fine adjustment by screw driver on internal dial

Paddle shaft: Titanium, providing an outstanding corrosion resistance, and improved mechanical live

Main housing material: Brass

Paddle: Polypropylene, 15 mm width, with 4 sections, numbered 1 to 4, can be cleaved for adjustment to pipe size **Pipe mounting:** Nickel plated brass union nut, ¾" BSPP, mounting on ¾" BSPP male thread with gasket. Recommended torque: 10±1Nm

Gasket: NBR

Electrical rating: Max 1A, Max 70W, Max 250V, resistive load. Use on inductive circuits reduces electrical rating. We recommend to protect the reed switch with contact protection device when used in inductive loads

Electric contact type: Normally open, closes by flow rise

Liquids compatibility: For use with clean water and liquids without magnetic particles and without chemical

incompatibility with brass, PPO and titanium Nominal pressure at 20°C: 2,5 MPa (PN25)

Liquids temperature range: 5 to 100°C (Do not withstand water freezing inside pipe)

be modified without prior advice can descriptions, features used on these data sheets are for guidance only and of

permanent improvement of our

Because of

Paddle flow switches, reed switch contact, external brass body. Type: R1V

Ambient temperature range: 5 to 80°C

Ingress protection: IP55

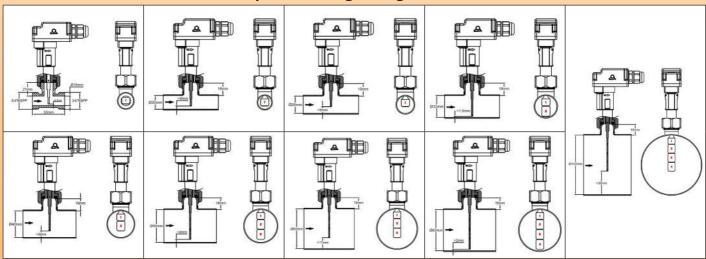
Calibration tolerances: +/-15% (on paddle operating force at end of paddle 1)

Electrical connection:

Standard:

IP54 connection box, with screw terminals connection block, M16×1.5 ISO cable gland Options:

- Connection box with EN17530-803-A (DIN43650-A) connector
- Connection box with IEC947-5-2 M12×1 4 pins connector


Installation instructions:

- Check carefully the paddle orientation: The arrow on housing must be exactly parallel to the pipe
- A 5 mm minimum gap must be respected between end of the paddle and tube wall opposite to the fitting.
- We recommend the use of nozzles of length less than or equal to 18mm between the gasket seat and the inside of the tube and with an inner diameter greater than or equal to 13.5 mm, to avoid blocking of the pallet

Accessories: 3/4" male PVC saddles for DN40 to DN100 (OD) PVC pipes, and other fittings: see section 8 of this catalogue.

Important notice: In the case of plastic pipes (PVC, PE), the DN (nominal diameter) corresponds to the **outside** diameter and wall thickness is variable depending on the application. This must be taken into account to avoid blocking the paddle. In the case of metal pipes, the inner diameter corresponds to the DN. Flow values data are for tubes whose internal diameter corresponds to DN.

Pipe mounting configurations

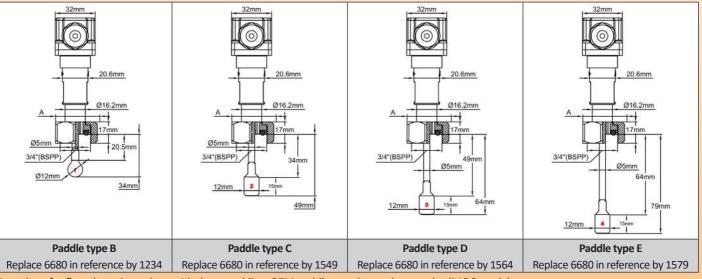
Average flow detection values (Liters/min)

								Pipe II) (mm)							
Paddle length	1	L5	20		2	25		2	4	10	5	0	6	i3	100	
iciigaii	*Close	**Open	*Close	**Open	*Close	**Open	*Close	**Open	*Close	**Open	*Close	**Open	*Close	**Open	*Close	**Open
1-m	2,7	2,3	4,8	4,5	13	11	22	20	38	35	67	47	167	112	472	317
1-H	4,3	3,3	7,3	6,5	18	17	29	27	53	48	83	72	218	142	616	401
1-M	5,5	3,2	14	12	25	22	38	35	67	60	132	108	262	202	740	571
1+2-m									20	18	37	32	68	52	192	155
1+2-H									30	28	53	43	88	72	248	203
1+2-M									40	37	67	63	123	115	347	324
1~3-m											22	20	37	33	125	108
1~3-H											34	32	63	50	176	165
1~3-M											46	43	77	73	233	217
1~4-m													27	24	88	72
1~4-H													43	40	140	132
1~4-M													58	55	180	167

m= calibration at min span H= calibration at Half span M= calibration at Max span * Close by flow rise (L/min) of contact open at no flow position

Cat6-2-5-20 Contact us www.ultimheat.com

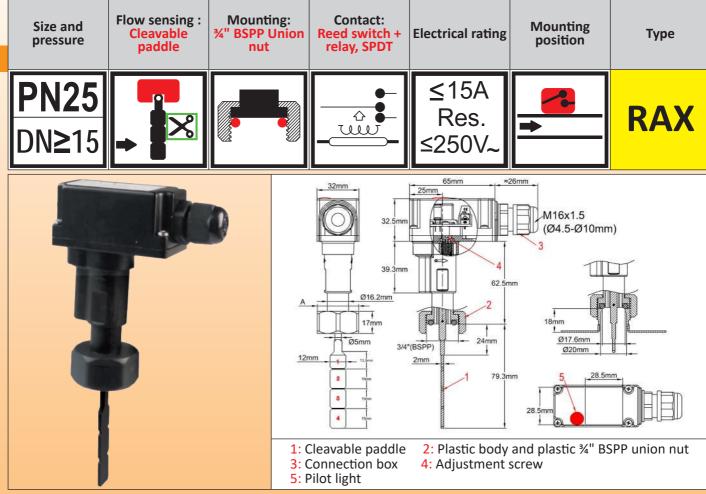
^{**} Open by flow decrease (L/min) of contact open at no flow position. Average values for indication only. Standard tolerances ±15%


Paddle flow switches, reed switch contact, external brass body. Type: R1V

Main references (With type A cleavable paddle)

Calibration	Electrical connection					
(Calibration force ±15%, measured at end of paddle N°1)	Waterproof connection box with M16×1.5 cable gland	Waterproof connection box with 4 pins, M12×1 IEC947-5-2 connector	Waterproof connection box with DIN 43650-A Connector			
Low span end: 3gr	R1V636680G35N00C	R1V636680G35N00L	R1V636680G35N00D			
Middle span: 7gr	R1V676680G35N00C	R1V676680G35N00L	R1V676680G35N00D			
High span end: 14gr	R1V6E6680G35N00C	R1V6E6680G35N00L	R1V6E6680G35N00D			

Other paddles (Non cleavable models)


Consult us for flow detection values with these paddles. OEM paddles can be made on order (MOQ apply)

Update 2025/07/09

Cat6-2-5-21

Paddle flow switches, reed switch contact, built-in 16A SPDT relay Type: RAX

Main uses: General application in flow detection. Recommended mounting position is on horizontal pipes, but can be mounted in any position. For water flow detection on dia 15 to 100mm water pipes. The built-in relay with SPDT contact can be used on resistive loads up to 15A 250V. The pilot light shows the contact position.

Functional principle:

Balanced magnetic paddle mounted perpendicular to the flow and activating a reed switch through the wall. The return of the paddle is made by magnetic action, without spring. No seal or liquid can pass between the piping system and the electrical contact. Suitable for corrosive water pools and spas and salination chlorination and bromination systems. Must not be used for water containing magnetic particles or high viscosity liquids, which block the movement of the paddle.

Adjustment:

- By cleaving the paddle
- Fine adjustment by screw driver on internal dial (on models with connection box only)

Paddle shaft: Titanium, providing an outstanding corrosion resistance, and improved mechanical live. Suitable for corrosive water pools and spas and salination, chlorination and bromination systems.

Main housing material: PPO, fiber glass reinforced for improved pressure resistance, usable with potable water. Paddle: PPO, 12 mm width, can be cleaved into 4 sections numbered 1 to 4 for pipe diameter adjustment.

Pipe mounting: Fiber glass reinforced union nut, ¾" BSPP, mounting on ¾" BSPP male fitting with gasket. Recommended torque: 7±1Nm.

Gasket: NBR

Electrical rating: 15A, 250V, resistive load. Use on inductive circuits reduces electrical rating.

Electric contact type: SPDT

Liquid compatibility: For use with clean water and liquids without magnetic particles and without chemical incompatibility with PPO and titanium.

Nominal pressure at 20°C: 1MPa (PN10)

Liquid temperature ranges: 5 to 100°C (cannot be used in water freezing pipes).

Ambient temperature range: 5 to 80°C

Ingress protection: IP55

Calibration tolerances: +/-15% (on paddle operating force at end of paddle 1).

Electrical connection: 2.5mm² connection block with screw terminals M16 cable gland output.

Installation instructions:

- Check carefully the paddle orientation: The arrow on housing must be exactly parallel to the pipe.

be modified without prior advice can features used on these data sheets are for guidance only and

Paddle flow switches, reed switch contact, built-in 16A SPDT relay Type: RAX

- A 5 mm minimum gap must be respected between end of the paddle and tube wall opposite to the fitting.

- We recommend the use of nozzles of length below or equal to 18mm between the gasket seat and the inside of the tube and with an inner diameter above or equal to 13.5 mm, to avoid blocking of the paddle.

Accessories: 3/4" male PVC saddles for DN40 to DN100 (OD) PVC pipes, and other fittings: see section 8 of this catalogue.

Options (MOQ apply): nickel plated ¾" BSPP union nut.

Important notice: In the case of plastic pipes (PVC, PE), the DN (nominal diameter) corresponds to the outside diameter and wall thickness is variable depending on the application. This must be taken into account to avoid blocking the paddle. In the case of metal pipes, the inner diameter corresponds to the DN. Flow values data are for tubes whose internal diameter corresponds to DN.

Average flow detection values (Liters/min)

Pip Paddle			Pipe ID	ID (mm)											
1	5	2	0	2	5	3	2	4	0	5	0	6	i3	10	00
*Close	**Open	*Close	**Open	*Close	**Open	*Close	**Open	*Close	**Open	*Close	**Open	*Close	**Open	*Close	**Open
2,7	2,3	4,8	4,5	13	11	22	20	38	35	67	47	167	112	472	317
4,3	3,3	7,3	6,5	18	17	29	27	53	48	83	72	218	142	616	401
5,5	3,2	14	12	25	22	38	35	67	60	132	108	262	202	740	571
								20	18	37	32	68	52	192	155
								30	28	53	43	88	72	248	203
								40	37	67	63	123	115	347	324
										22	20	37	33	125	108
										34	32	63	50	176	165
										46	43	77	73	233	217
												27	24	88	72
												43	40	140	132
												58	55	180	167
	*Close 2,7 4,3 5,5	2,7 2,3 4,3 3,3 5,5 3,2	*Close **Open *Close 2,7 2,3 4,8 4,3 3,3 7,3 5,5 3,2 14	*Close **Open *Close **Open 2,7 2,3 4,8 4,5 4,3 3,3 7,3 6,5	*Close **Open *Close **Open *Close 2,7 2,3 4,8 4,5 13 4,3 3,3 7,3 6,5 18 5,5 3,2 14 12 25	*Close **Open *Close **Open *Close **Open 2,7 2,3 4,8 4,5 13 11 4,3 3,3 7,3 6,5 18 17 5,5 3,2 14 12 25 22	*Close **Open *Close **Open *Close **Open *Close 2,7 2,3 4,8 4,5 13 11 22 4,3 3,3 7,3 6,5 18 17 29 5,5 3,2 14 12 25 22 38	15 20 25 32	15 20 25 32 4	15 20 25 32 40	15 20 25 32 40 5	15 20 25 32 40 50 *Close **Open *Close **Open *Close **Open *Close **Open 2,7 2,3 4,8 4,5 13 11 22 20 38 35 67 47 4,3 3,3 7,3 6,5 18 17 29 27 53 48 83 72 5,5 3,2 14 12 25 22 38 35 67 60 132 108 8 1 1 2 2 38 35 67 60 132 108 9 1 1 2 2 38 35 67 60 132 108 1 1 1 1 4 40 37 67 63 2 2 2 2 3 4 46 43 3 4	Total Core Tot	Total Core Tot	Total Property of the color Tota

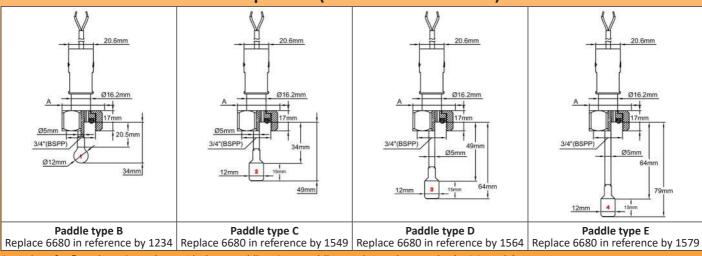
m= calibration at min span H= calibration at Half span M= calibration at Max span

be 1

can

our products, drawings, descriptions, features used on these data sheets are for guidance only and

permanent improvement of


Because of

Close by flow rise (L/min) of contact open at no flow position.

Main references (With type A cleavable paddle)

Calibration (Calibration force ±15%, measured at end of paddle N°1)				
Low span end: 3gr Middle span: 7gr High span end: 14gr				
RAX635680G31N68E	RAX675680G31N68E	RAX6E5680G31N68E		

Other paddles (Non cleavable models)

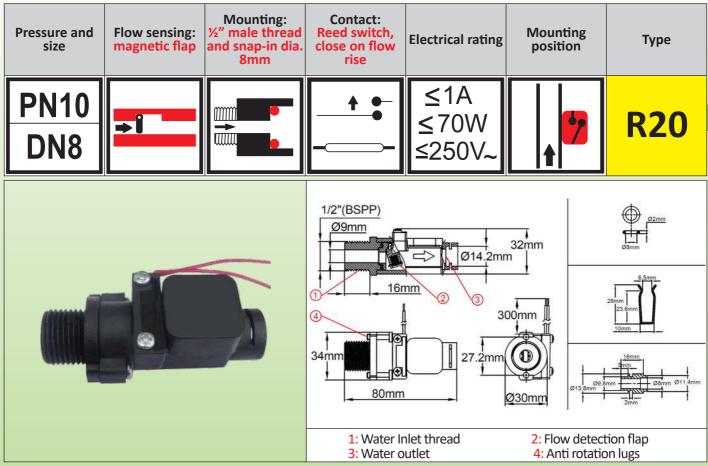
Consult us for flow detection values with these paddles. OEM paddles can be made on order (MOQ apply).

Update 2025/10/24

Open by flow decrease (L/min) of contact open at no flow position. Average values for indication only. Standard tolerances ±15%

Because of permanent improvement of our products, drawings, descriptions, features used on these data sheets are for guidance only and can be modified without prior advice

Flap type, in line mounting


Contact us www.ultimheat.com Cat6-2-6-1

Because of permanent improvement of our products, drawings, descriptions, features used on these data sheets are for guidance only and can be modified without prior advice

Flap flow switches, reed switch contact, ½" BSPP male thread, Type: R20

Main applications: Product developed for miniature instantaneous water heaters for showers. The mobile flap system provides compactness. Water inlet is done directly by the ½" BSPP male thread. Mandatory vertical mounting, with water inlet from the bottom. Connection to internal copper piping DN8 and DN10 with quick coupling

Functional principle:

Magnetic flap mounted perpendicular to the flow and activating a reed switch through the wall. The return of the flap is made by gravity, without spring. No seal or liquid can pass between the piping system and the electrical contact. Suitable for potable water. Must not be used for water containing magnetic particles or high viscosity liquids, which block the movement of the pallet.

Adjustment: Can be factory set by adjusting the counterweight mounted in the flap

Body material: PPO compatible with drinking water.

Flap: PPO

Paddle shaft: stainless steel

Electrical rating: Max 1A, Max 70W, Max 250V, resistive load. Use on inductive circuits reduces electrical rating. We

recommend to protect the reed switch with contact protection device when used in inductive loads

Electric contact type: Normally open, closes by flow rise

Liquids compatibility: For use with clean water and liquids without magnetic particles and without chemical

incompatibility with PPO and stainless steel Nominal pressure at 20°C: 1MPa (PN10) Flow detection set point factory setting limits:

Close by flow rise: 1.8 to 3 L/min

Open by flow decrease: About 0.4 to 0.5L/min lower than close value

Nominal diameter: DN8-DN10

Mandatory mounting position: on vertical pipes, upstream flow

Water pipe connection:

- Water inlet: on male ½" fitting with gasket with 2 anti-rotation lugs. Recommended torque 5N.m

- Water outlet: fast-on connection with O-ring and clips on DN8 or DN10 copper tubes with brazed or welded brass termination.

Liquids temperature range: 5 to 80°C

Ambient temperature range: 5 to 50°C

Ingress protection: IP65

Electrical connection: 2 × AWG24 wires (0.2mm²), PVC insulation, T80°, standard length 300 mm.

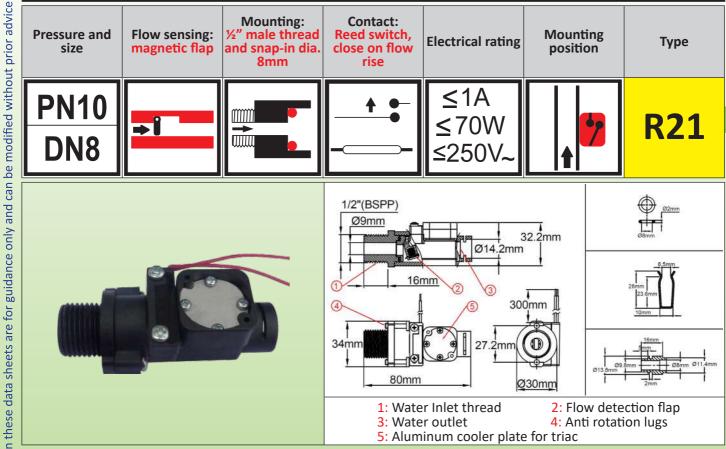
Accessories: brass terminations for brazing or soldering on other pipes diameters: see section 8 of this catalogue.

Options (MOQ apply): cable with connector or terminals, other cable length, other calibration values.

be modified without prior advice can used on these data sheets are for guidance only and of of

Flap flow switches, reed switch contact, ½" BSPP male thread, Type: R20

Important note: Standard copper tubes diameter for building applications (Water and gas) are given by the EN1057 standard, which defines the nominal diameter (DN) as the inside diameter. Copper tubes for applications in air conditioning and refrigeration are described in EN 12735-1 and those for vacuum and medical gases and vacuum are described in EN 13348. The EN127357 standard defines the copper tubes for refrigeration with diameters in inches. Copper tubes are often described in France by the outside diameter followed by the thickness in mm.


Main references (with 300 mm wires)

Outle	t for copper tube dia.10	× 8 mm	Outlet for copper tube dia.12 × 10 mm			
References	Close on flow rise (L/min)	Open on flow decrease (L/min)	References	Close on flow rise (L/min)	Open on flow decrease (L/min)	
R20B670200000430	2±0.2	1,6±0.2	R20B680200000430	2±0.2	1,6±0.2	
R20B670250000430	2,5±0.25	2±0.25	R20B680250000430	2,5±0.25	2±0.25	
R20B670300000430	3±0.3	2,5±0.3	R20B680300000430	3±0.3	2,5±0.3	

Cat6-2-6-4 Contact us www.ultimheat.com

Flap flow switches, reed switch contact, ½" BSPP male thread, with triac cooler. Type: R21

Main applications: Product developed for miniature instantaneous water heaters for showers. The mobile flap system provides compactness. Water inlet is done directly by the ½" BSPP male thread. Mandatory vertical mounting, with water inlet from the bottom. Connection to internal copper piping DN8 and DN10 with quick coupling. A built in aluminum heat exchanger, in contact with the cold water input is provided to cool a triac.

Functional principle:

Magnetic flap mounted perpendicular to the flow and activating a reed switch through the wall. The return of the flap is made by gravity, without spring. No seal or liquid can pass between the piping system and the electrical contact. Suitable for potable water. Must not be used for water containing magnetic particles or high viscosity liquids, which block the movement of the pallet.

Adjustment: Can be factory set by adjusting the counterweight mounted in the flap

Body material: PPO compatible with drinking water.

Flap: PPO

Paddle shaft: stainless steel

Electrical rating: Max 1A, Max 70W, Max 250V, resistive load. Use on inductive circuits reduces electrical rating. We

recommend to protect the reed switch with contact protection device when used in inductive loads

Electric contact type: Normally open, closes by flow rise

Liquids compatibility: For use with clean water and liquids without magnetic particles and without chemical

incompatibility with PPO and stainless steel Nominal pressure at 20°C: 1MPa (PN10) Flow detection set point factory setting limits:

Close by flow rise: 1.8 to 3 L/min

Open by flow decrease: About 0.4 to 0.5L/min lower than close value

Nominal diameter: DN8-DN10

Mandatory mounting position: on vertical pipes, upstream flow

Water pipe connection:

- Water inlet: on male ½" fitting with gasket with 2 anti-rotation lugs. Recommended torque 5N.m

- Water outlet: fast-on connection with O-ring and clips on DN8 or DN10 copper tubes with brazed or welded brass termination.

Liquids temperature range: 5 to 80°C Ambient temperature range: 5 to 50°C

Ingress protection: IP65

Electrical connection: 2 × AWG24 wires (0.2mm²), PVC insulation, T80°, standard length 300 mm.

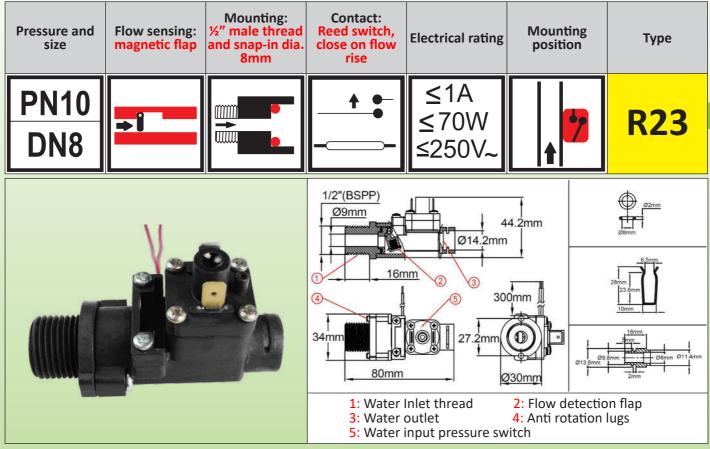
Accessories: brass terminations for brazing or soldering on other pipes diameters: see section 8 of this catalogue.

Options (MOQ apply): cable with connector or terminals, other cable length, other calibration values.

can on these data sheets are for guidance only and of

Flap flow switches, reed switch contact, ½" BSPP male thread, with triac cooler. Type: R21

Important note: Standard copper tubes diameter for building applications (Water and gas) are given by the EN1057 standard, which defines the nominal diameter (DN) as the inside diameter. Copper tubes for applications in air conditioning and refrigeration are described in EN 12735-1 and those for vacuum and medical gases and vacuum are described in EN 13348. The EN127357 standard defines the copper tubes for refrigeration with diameters in inches. Copper tubes are often described in France by the outside diameter followed by the thickness in mm.


Main references (with 300 mm wires)

Outl	et for copper tube dia.10	× 8 mm	Outlet for copper tube dia.12 × 10 mm			
References	Close on flow rise (L/min)	Open on flow decrease (L/min)	References	Close on flow rise (L/min)	Open on flow decrease (L/min)	
R21B670200000430	2±0.2	1,6±0.2	R21B680200000430	2±0.2	1,6±0.2	
R21B670250000430	2,5±0.25	2±0.25	R21B680250000430	2,5±0.25	2±0.25	
R21B670300000430	3±0.3	2,5±0.3	R21B680300000430	3±0.3	2,5±0.3	

Cat6-2-6-6 Contact us www.ultimheat.com

Flap flow switches, reed switch contact, ½" BSPP male thread, with water input pressure control. Type: R23

Main applications: Product developed for miniature instantaneous water heaters for showers in circuits where the water input pressure can be variable. The mobile flap system provides compactness. Water inlet is done directly by the ½" BSPP male thread. Mandatory vertical mounting, with water inlet from the bottom. Connection to internal copper piping DN8 and DN10 with quick coupling. A built in pressure switch will automatically stop water heating when the water input pressure is lower than 800 millibar.

Functional principle:

Magnetic flap mounted perpendicular to the flow and activating a reed switch through the wall. The return of the flap is made by gravity, without spring. No seal or liquid can pass between the piping system and the electrical contact. Suitable for potable water. Must not be used for water containing magnetic particles or high viscosity liquids, which block the movement of the pallet.

Adjustment: Can be factory set by adjusting the counterweight mounted in the flap

Body material: PPO compatible with drinking water.

Flap: PPO

Paddle shaft: stainless steel

Flow detection switch electrical rating: Max 1A, Max 70W, Max 250V, resistive load. Use on inductive circuits reduces electrical rating. We recommend to protect the reed switch with contact protection device when used in inductive loads

Flow detection electrical contact type: Normally open, closes by flow rise

Characteristics of the water inlet pressure switch:

1A 250V pressure switch, switches off the electrical heater when the inlet pressure decreases below 800 millibars, and switches on when the pressure is higher than this value. Electrical connection by two 6.3×0.8 mm fast on terminals.

Liquids compatibility: For use with clean water and liquids without magnetic particles and without chemical incompatibility with PPO, stainless steel, and NBR pressure switch membrane

Nominal pressure at 20°C: 1MPa (PN10) Flow detection set point factory setting limits:

Close by flow rise: 1.8 to 3 L/min

Open by flow decrease: About 0.4 to 0.5L/min lower than close value

Nominal diameter: DN8-DN10

Mandatory mounting position: on vertical pipes, upstream flow

Water pipe connection:

- Water inlet: on male ½" fitting with gasket with 2 anti-rotation lugs. Recommended torque 5N.m
- Water outlet: fast-on connection with O-ring and clips on DN8 or DN10 copper tubes with brazed or welded brass termination.

be modified without prior advice can on these data sheets are for guidance only and of

be modified without prior advice Because of permanent improvement of our products, drawings, descriptions, features used on these data sheets are for guidance only and can

Flap flow switches, reed switch contact, ½" BSPP male thread, with water input pressure control. Type: R23

2

Liquids temperature range: 5 to 80°C **Ambient temperature range:** 5 to 50°C

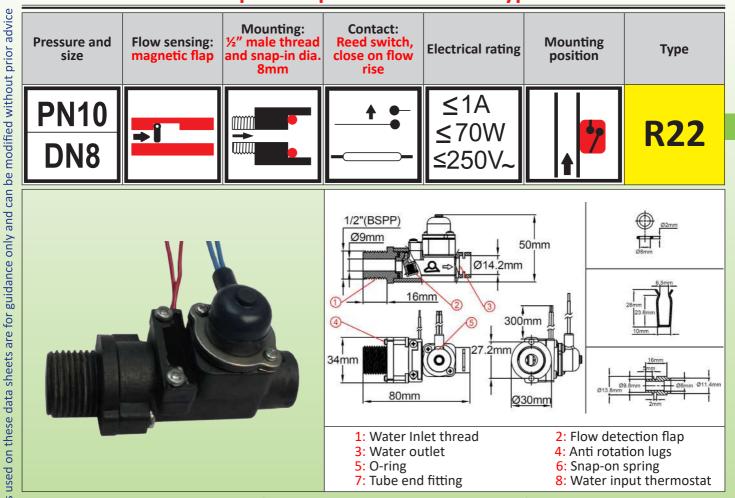
Ingress protection: IP65

Electrical connection: 2 × AWG24 wires (0.2mm²), PVC insulation, T80°, standard length 300 mm.

Accessories: brass terminations for brazing or soldering on other pipes diameters: see section 8 of this catalogue. Options (MOQ apply): cable with connector or terminals, other cable length, other flow or temperature calibration

values.

Important note: Standard copper tubes diameter for building applications (Water and gas) are given by the EN1057 standard, which defines the nominal diameter (DN) as the inside diameter. Copper tubes for applications in air conditioning and refrigeration are described in EN 12735-1 and those for vacuum and medical gases and vacuum are described in EN 13348. The EN127357 standard defines the copper tubes for refrigeration with diameters in inches. Copper tubes are often described in France by the outside diameter followed by the thickness in mm.


Main references (with 300 mm wires)

Outlet	for copper tube dia.10 ×	8 mm	Outlet for copper tube dia.12 × 10 mm			
References	Close on flow rise (L/min)	Open on flow decrease (L/min)	References	Close on flow rise (L/min)	Open on flow decrease (L/min)	
R23B670208000430	2±0.2	1,6±0.2	R23B680208000430	2±0.2	1,6±0.2	
R23B670258000430	2,5±0.25	2±0.25	R23B680258000430	2,5±0.25	2±0.25	
R23B670308000430	3±0.3	2,5±0.3	R23B680380000430	3±0.3	2,5±0.3	

Cat6-2-6-8 Contact us www.ultimheat.com

Flap flow switches, reed switch contact, ½" BSPP male thread, with water input temperature control. Type: R22

Main applications: Product developed for miniature instantaneous water heaters for showers in circuits where the water can be preheated by solar energy equipment or heat pump. The mobile flap system provides compactness. Water inlet is done directly by the ½" BSPP male thread. Mandatory vertical mounting, with water inlet from the bottom. Connection to internal copper piping DN8 and DN10 with quick coupling. A built in disc thermostat, in contact with the cold water input, will automatically stop water heating when the water input is higher than 50°C.

Functional principle:

Magnetic flap mounted perpendicular to the flow and activating a reed switch through the wall. The return of the flap is made by gravity, without spring. No seal or liquid can pass between the piping system and the electrical contact. Suitable for potable water. Must not be used for water containing magnetic particles or high viscosity liquids, which block the movement of the pallet.

Adjustment: Can be factory set by adjusting the counterweight mounted in the flap

Body material: PPO compatible with drinking water.

Flap: PPO

our of Paddle shaft: stainless steel

Flow detection switch electrical rating: Max 1A, Max 70W, Max 250V, resistive load. Use on inductive circuits reduces electrical rating. We recommend to protect the reed switch with contact protection device when used in inductive

Flow detection electrical contact type: Normally open, closes by flow rise

Characteristics of the water inlet thermostat:

16A 250V disc thermostat, switches off the electrical heater when the inlet temperature exceeds 50°C ±3° C. Switch on when the inlet temperature drops below 42° C ±4° C. Electrical connection protected by silicone cap, protection, two 1.5mm² wires output, T80°C PVC insulation, 300 mm standard length.

Liquids compatibility: For use with clean water and liquids without magnetic particles and without chemical incompatibility with PPO and stainless steel

Nominal pressure at 20°C: 1MPa (PN10) Flow detection set point factory setting limits:

Close by flow rise: 1.8 to 3 L/min

Open by flow decrease: About 0.4 to 0.5L/min lower than close value

Nominal diameter: DN8-DN10

Mandatory mounting position: on vertical pipes, upstream flow

Water pipe connection:

- Water inlet: on male ½" fitting with gasket with 2 anti-rotation lugs. Recommended torque 5N.m

Cat6-2-6-9 Contact us www.ultimheat.com

modified without prior advice be 1 can Because of permanent improvement of our products, drawings, descriptions, features used on these data sheets are for guidance only and

Flap flow switches, reed switch contact, ½" BSPP male thread, with water input temperature control. Type: R22

- Water outlet: fast-on connection with O-ring and clips on DN8 or DN10 copper tubes with brazed or welded brass termination.

Liquids temperature range: 5 to 80°C **Ambient temperature range:** 5 to 50°C

Ingress protection: IP65

Electrical connection: 2 × AWG24 wires (0.2mm²), PVC insulation, T80°, standard length 300 mm.

Accessories: brass terminations for brazing or soldering on other pipes diameters: see section 8 of this catalogue.

Options (MOQ apply): cable with connector or terminals, other cable length, other flow or temperature calibration values.

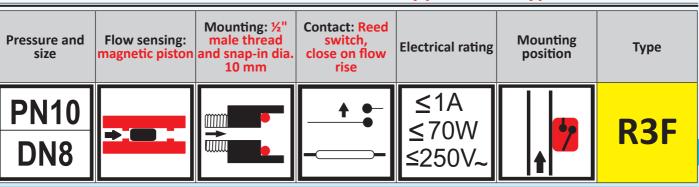
Important note: Standard copper tubes diameter for building applications (Water and gas) are given by the EN1057 standard, which defines the nominal diameter (DN) as the inside diameter. Copper tubes for applications in air conditioning and refrigeration are described in EN 12735-1 and those for vacuum and medical gases and vacuum are described in EN 13348. The EN127357 standard defines the copper tubes for refrigeration with diameters in inches. Copper tubes are often described in France by the outside diameter followed by the thickness in mm.

Main references (with 300 mm wires)

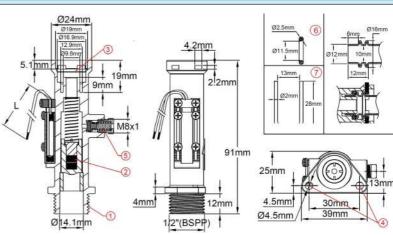
Outlet	for copper tube dia.10 >	« 8 mm	Outlet for copper tube dia.12 × 10 mm			
References	Close on flow rise (L/min)	Open on flow decrease (L/min)	References	Close on flow rise (L/min)	Open on flow decrease (L/min)	
R22B670200500430	2±0.2	1,6±0.2	R22B680200500430	2±0.2	1,6±0.2	
R22B670250500430	2,5±0.25	2±0.25	R22B680250500430	2,5±0.25	2±0.25	
R22B670300500430	3±0.3	2,5±0.3	R22B680300500430	3±0.3	2,5±0.3	

Cat6-2-6-10 Contact us www.ultimheat.com

Piston type


Because of permanent improvement of our products, drawings, descriptions, features used on these data sheets are for guidance only and can be modified without prior advice

Contact us www.ultimheat.com Cat6-2-7-1



Because of permanent improvement of our products, drawings, descriptions, features used on these data sheets are for guidance only and can be modified without prior advice

Piston flow switches, reed switch contact, ½" BSPP male thread, and snap-on connection for DN10 or 12.7 OD copper tube. Type: R3F

- 1: ½" BSPP Water inlet
- 3: DN10 Water outlet

7: Snap-on spring

- 5: Over pressure valve
- 2: Flow detection piston4: Mounting bracket
- 6: O-ring

Main applications: Product developed for electrical or gas instantaneous water heaters. Water inlet is done directly by the ½" BSPP male thread. Mandatory vertical mounting, with water inlet from the bottom. Connection to internal copper piping DN10 with quick coupling. Built-in overpressure valve.

Functional principle: Magnetic piston mounted in line with the flow and activating a reed switch through the wall. The return of the piston is made by spring. No seal or liquid can pass between the piping system and the electrical contact. Suitable for potable water. Must not be used for water containing magnetic particles or high viscosity liquids, which block the movement of the piston.

Adjustment: Can be factory set by adjusting the spring force and/ or changing the piston diameter

Body material: PPO compatible with drinking water.

Piston: PPO

Spring: 304 stainless steel

Electrical rating: Max 1A, Max 70W, Max 250V, resistive load. Use on inductive circuits reduces electrical rating. We

recommend to protect the reed switch with contact protection device when used in inductive loads

Electric contact type: Normally open, closes by flow rise

Liquids compatibility: For use with clean water and liquids without magnetic particles and without chemical

incompatibility with PPO and stainless steel Nominal pressure at 20°C: 1MPa (PN10) Flow detection set point factory setting limits:

Close by flow rise: 4 to 12 L/min

Open by flow decrease: About 0.4 to 0.5 L/min lower than close value

Nominal diameter: DN8-DN10

Mandatory mounting position: on vertical pipes, upstream flow

Water pipe connection:

- Water inlet: on male ½" fitting with gasket with 2 anti-rotation lugs. Recommended torque 5N.m
- Water outlet: fast-on connection with O-ring and clips on DN10 beaded copper tubes. OD 12 to 12.7mm

Liquids temperature range: 5 to 80°C

Contact us www.ultimheat.com Cat6-2-7-3

without prior advice pe Because of permanent improvement of our products, drawings, descriptions, features used on these data sheets are for guidance only and can

Piston flow switches, reed switch contact, ½" BSPP male thread, and snap-on connection for DN10 or 12.7 OD copper tube. Type: R3F

Ambient temperature range: 5 to 50°C

Overpressure valve calibration value: 1.5 MPa +0.5, -0

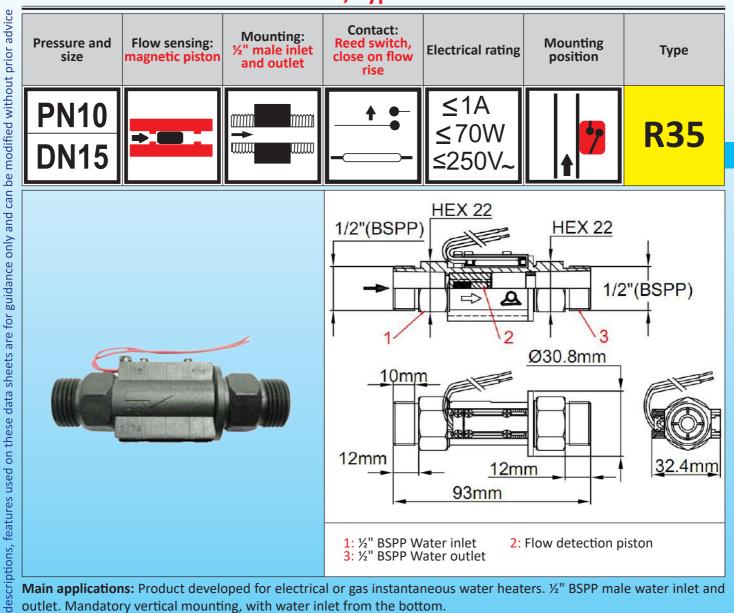
Ingress protection: IP65

Electrical connection: 2 × AWG24 wires (0.2mm²), PVC insulation, T80°, standard length 300 mm.

Options (MOQ apply): cable with connector or terminals, other cable length, other calibration values. On request it is

possible to produce these models with upside water inlet

Important note: Standard copper tubes diameter for building applications (Water and gas) are given by the EN1057 standard, which defines the nominal diameter (DN) as the inside diameter. Copper tubes for applications in air conditioning and refrigeration are described in EN 12735-1 and those for vacuum and medical gases and vacuum are described in EN 13348. The EN127357 standard defines the copper tubes for refrigeration with diameters in inches. Copper tubes are often described in France by the outside diameter followed by the thickness in mm.


Main references (with 300 mm wires)

References	Close on flow rise (L/min)	Open on flow decrease (L/min)
R3FA670400150330	4 ±0.2	1,6±0.2
R3FA670600150330	6±0.25	2±0.25
R3FA670800150330	8±0.3	2,5±0.3

Other calibration on request.

Piston flow switches, reed switch contact, inlet and outlet ½" BSPP Q male, Type: R35

Main applications: Product developed for electrical or gas instantaneous water heaters. ½" BSPP male water inlet and outlet. Mandatory vertical mounting, with water inlet from the bottom.

Functional principle: Magnetic piston mounted in line with the flow and activating a reed switch through the wall. The return of the piston is made by gravity. No seal or liquid can pass between the piping system and the electrical contact. Suitable for potable water. Must not be used for water containing magnetic particles or high viscosity liquids, which block the movement of the piston.

Adjustment: Can be factory set by adjusting the piston diameter and piston weight

Body material: PPO compatible with drinking water.

Piston: PPO

Electrical rating: Max 1A, Max 70W, Max 250V, resistive load. Use on inductive circuits reduces electrical rating. We recommend to protect the reed switch with contact protection device when used in inductive loads

Electric contact type: Normally open, closes by flow rise

Liquids compatibility: For use with clean water and liquids without magnetic particles and without chemical

incompatibility with PPO

Nominal pressure at 20°C: 1MPa (PN10) Flow detection set point factory setting limits:

Close by flow rise: 1 to 12 L/min

Open by flow decrease: About 0.4 to 0.5L/min lower than close value

Nominal diameter: DN15

Mandatory mounting position: on vertical pipes, upstream flow

Water pipe connection: Water inlet and outlet: ½" BSPP male fitting (Needs gasket)

Liquids temperature range: 5 to 80°C Ambient temperature range: 5 to 50°C

Overpressure valve calibration value: 1.5 MPa +0.5, -0

Ingress protection: IP65

Electrical connection: 2 × AWG24 wires (0.2mm²), PVC insulation, T80°, standard length 300 mm.

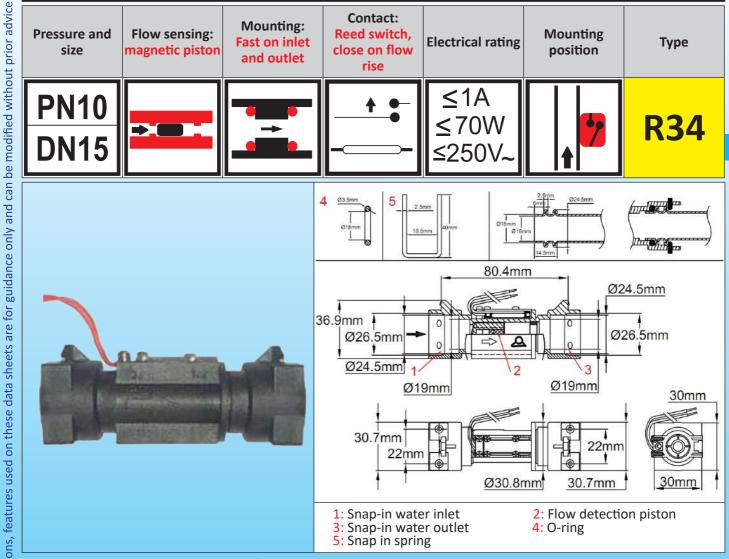
Cat6-2-7-5 Contact us www.ultimheat.com

Piston flow switches, reed switch contact, inlet and outlet ½" BSPP 🔎 male, Type: R35

Options (MOQ apply):

- Wires with connector or terminals,
- Other wire lengths,
- Other calibration values
- Two contacts
- Upside water inlet, (by adding an internal stainless steel piston spring)

Main references (with 300 mm wires)


References	Close on flow rise (L/min)	Open on flow decrease (L/min)
R35B600100000330	1±0,2	0,7±0,2
R35B600150000330	1,5±0,2	1,2±0,2
R35B600180000330	1,8±0,2	1,4±0,2
R35B600300000330	3±0,3	2.6±0,3

Other calibration on request.

Because of permanent improvement of our products, drawings, descriptions, features used on these data sheets are for guidance only and can be modified without prior advice

Piston flow switches, reed switch contact, snap in inlet and outlet for \triangle copper tube, Type: R34

Main applications: Product developed for electrical or gas instantaneous water heaters. Snap in water inlet and outlet for copper tubes. Mandatory vertical mounting, with water inlet from the bottom.

Functional principle: Magnetic piston mounted in line with the flow and activating a reed switch through the wall. The return of the piston is made by gravity. No seal or liquid can pass between the piping system and the electrical contact. Suitable for potable water. Must not be used for water containing magnetic particles or high viscosity liquids, which block the movement of the piston.

Adjustment: Can be factory set by adjusting the piston diameter and piston weight

Body material: PPO compatible with drinking water.

Piston: PPO

of

descriptions, features used on these data sheets are for guidance only and can

Electrical rating: Max 1A, Max 70W, Max 250V, resistive load. Use on inductive circuits reduces electrical rating. We

recommend to protect the reed switch with contact protection device when used in inductive loads

Electric contact type: Normally open, closes by flow rise

Liquids compatibility: For use with clean water and liquids without magnetic particles and without chemical

incompatibility with PPO

Nominal pressure at 20°C: 1MPa (PN10) Flow detection set point factory setting limits:

Close by flow rise: 1 to 12 L/min

Open by flow decrease: About 0.4 to 0.5L/min lower than close value

Nominal diameter: DN15

Mandatory mounting position: on vertical pipes, upstream flow

Water pipe connection: Fast-on connection with O-ring and clips on DN20 beaded copper tubes. OD 18mm

Liquids temperature range: 5 to 80°C Ambient temperature range: 5 to 50°C

> Cat6-2-7-7 Contact us www.ultimheat.com

Because of permanent improvement of our products, drawings, descriptions, features used on these data sheets are for guidance only and can be modified without prior advice

Piston flow switches, reed switch contact, snap in inlet and outlet for copper tube, Type: R34

Overpressure valve calibration value: 1.5 MPa +0.5, -0

Ingress protection: IP65

Electrical connection: 2 × AWG24 wires (0.2mm²), PVC insulation, T80°, standard length 300 mm.

Options (MOQ apply):

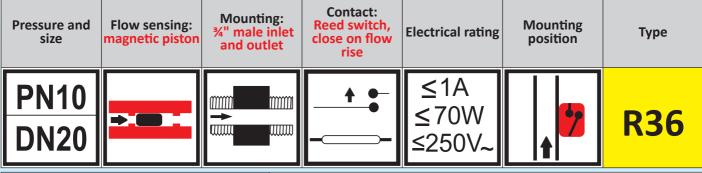
- Wires with connector or terminals

- Other wire lengths

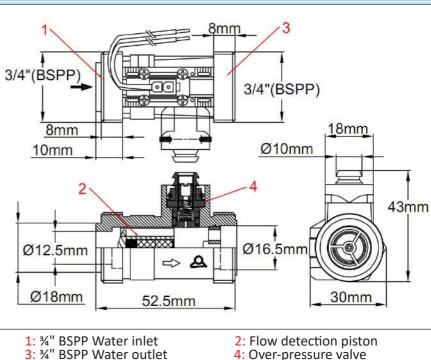
- Other calibration values

- Two contacts

Upside water inlet, (by adding an internal stainless steel piston spring)


Main references (with 300 mm wires)

References	Close on flow rise (L/min)	Open on flow decrease (L/min)
R34B610100000330	1±0,2	0,7±0,2
R34B610150000330	1,5±0,2	1,2±0,2
R34B610180000330	1,8±0,2	1,4±0,2
R34B610300000330	3±0,3	2.6±0,3


Other calibration on request.

Piston flow switches, reed switch contact, inlet and outlet ¾" BSPP 🔍 male, Type: R36

4: Over-pressure valve

Main applications: Product developed for electrical or gas instantaneous water heaters. ¾" BSPP male water inlet and outlet. Mandatory vertical mounting, with water inlet from the bottom. Built-in over-pressure valve.

Functional principle: Magnetic piston mounted in line with the flow and activating a reed switch through the wall. The return of the piston is made by gravity. No seal or liquid can pass between the piping system and the electrical contact. Suitable for potable water. Must not be used for water containing magnetic particles or high viscosity liquids, which block the movement of the piston.

Adjustment: Can be factory set by adjusting the piston diameter and piston weight

Body material: PPO compatible with drinking water.

Piston: PPO

be modified without prior advice

Electrical rating: Max 1A, Max 70W, Max 250V, resistive load. Use on inductive circuits reduces electrical rating. We recommend to protect the reed switch with contact protection device when used in inductive loads

Electric contact type: Normally open, closes by flow rise

Liquids compatibility: For use with clean water and liquids without magnetic particles and without chemical

incompatibility with PPO

Nominal pressure at 20°C: 1MPa (PN10)

Flow detection set point factory setting limits:

Close by flow rise: 2,4 to 8 L/min

Open by flow decrease: About 0.4 to 0.5L/min lower than close value

Nominal diameter: DN20

Mandatory mounting position: on vertical pipes, upstream flow

Water pipe connection: Water inlet and outlet: ¾" BSPP male fitting (Needs gasket). Recommended torque: 7N.m.

Liquids temperature range: 5 to 80°C Ambient temperature range: 5 to 50°C

> Cat6-2-7-9 Contact us www.ultimheat.com

Piston flow switches, reed switch contact, inlet and outlet ¾" BSPP 🔎 male, Type: R36

Overpressure valve calibration value: 1.5 MPa +0.5, -0

Ingress protection: IP65

Electrical connection: 2 × AWG24 wires (0.2mm²), PVC insulation, T80°, standard length 300 mm.

Options (MOQ apply):

- Wires with connector or terminals

- Other wire lengths

- Other calibration values

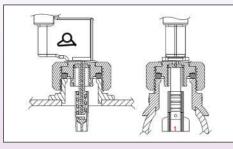
Upside water inlet, (by adding an internal stainless steel piston spring)

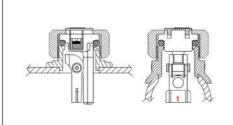
Main references (with 300 mm wires)

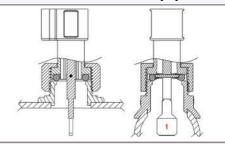
References	Close on flow rise (L/min)	Open on flow decrease (L/min)			
R36B630240150330	2,4±0,3	1,8±0,3			
R36B630300150330	3±0,3	2.6±0,3			
R36B630350150330	3,5±0,3	2.9±0,3			

Other calibration on request.

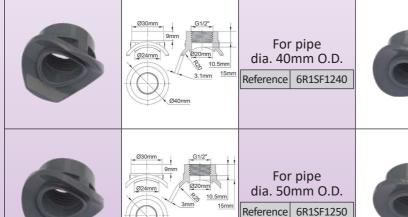
Accessories

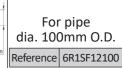

Because of permanent improvement of our products, drawings, descriptions, features used on these data sheets are for guidance only and can be modified without prior advice


Contact us www.ultimheat.com Cat6-2-8-1

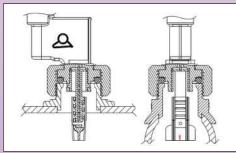


Accessories for paddle switches

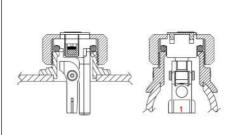

1/2"BSPP female PVC saddles for bonding, fit dia. 24 to 25 mm hole drill in the pipe

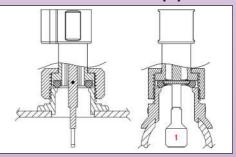


Compatibles with R1D, R1R, R1L, R1S

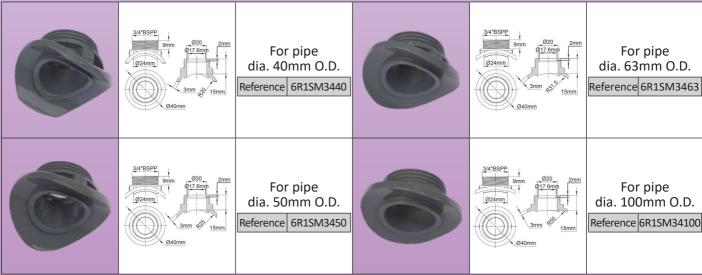


For pipe

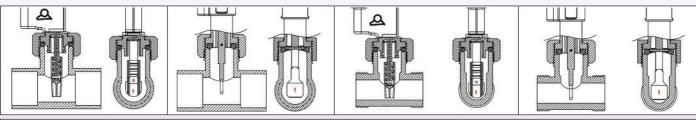

dia. 63mm O.D.

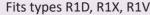

Reference 6R1SF1263

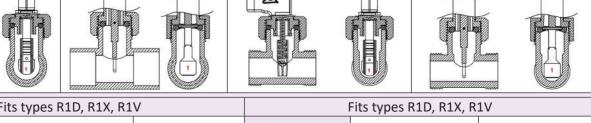
3/4"BSPP male PVC saddles for bonding, fit dia. 24 to 25 mm hole drill in the pipe

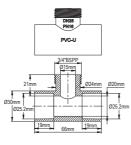


Because of permanent improvement of our products, drawings, descriptions, features used on these data sheets are for guidance only and can be modified without prior advice


Compatibles with R1B, R1P, R1X, R1V



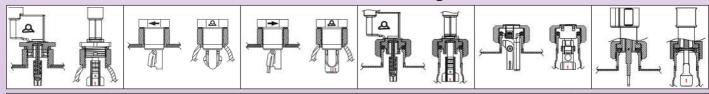

Contact us www.ultimheat.com Cat6-2-8-3

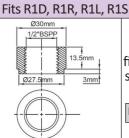

Accessories for paddle switches

Tees

34" BSPP male PVC Tee for bonding on DN25 PVC pipe

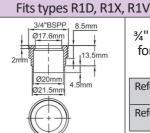
Reference 6R1TP3425




34" BSPP male Tee, brass, DN15-PN25

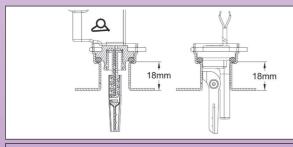
Reference 6R1TB3434

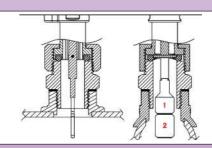
Male and female fittings



1/2" BSPP female fitting, 304L stainless steel, for welding on 27.6mm hole

Reference 6R1P1213S

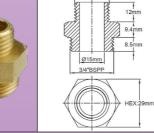



34" BSPP male fitting,

for brazing on ID 15 mm tube

Reference in Brass	6R1P3419B			
Reference in 304L	6R1P3419S			

Other fittings



Fits R1B and R1P

DN15 Snap-in fitting, stainless steel for welding, or copper for brazing (includes spring).

Reference in copper	6R1S1525C
Reference in 304L	6R1S1525S

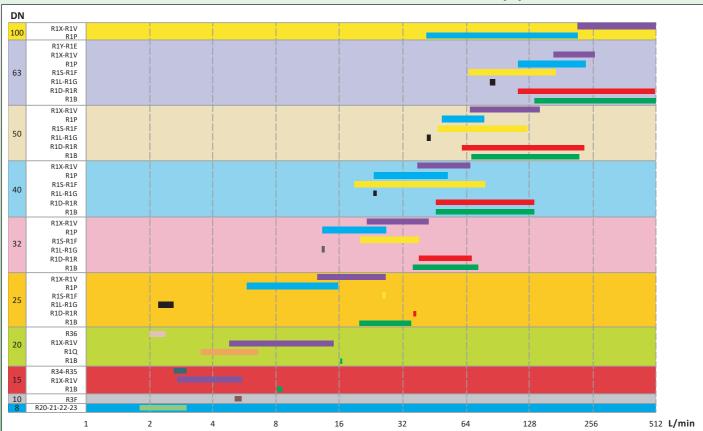
Fits R1X and R1V

34" BSPP x 1/2" BSPP Conversion fitting, brass

Reference 6R1C1234B

Cat6-2-8-4 Contact us www.ultimheat.com

Tables


Because of permanent improvement of our products, drawings, descriptions, features used on these data sheets are for guidance only and can be modified without prior advice

Contact us www.ultimheat.com Cat6-2-9-1

Tables

Flow switches detection limits versus flow and pipe I.D.

Conversion table

Liter /min and liter/hour converted into US gallon/min and US gallon/ hour

L/Min	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9
L/h	6	12	18	24	30	36	42	48	54
US Gal/min	0,026	0,053	0,079	0,106	0,132	0,159	0,185	0,211	0,238
US Gal/h	1,59	3,17	4,76	6,34	7,93	9,51	11,10	12,68	14,27
L/Min	1,0	1,5	2,0	2,5	3,0	3,5	4,0	4,5	5,0
L/h	60	90	120	150	180	210	240	270	300
US Gal/min	0,26	0,40	0,53	0,66	0,79	0,92	1,06	1,19	1,32
US Gal/h	15,85	23,78	31,70	39,63	47,56	55,48	63,41	71,33	79,26
L/Min	5,5	6,0	6,5	7,0	7,5	8,0	8,5	9,0	9,5
L/h	330	360	390	420	450	480	510	540	570
US Gal/min	1,45	1,59	1,72	1,85	1,98	2,11	2,25	2,38	2,51
US Gal/h	87,2	95,1	103,0	111,0	118,9	126,8	134,7	142,7	150,6
L/Min	10	12,5	15,0	17,5	20	22,5	25,0	27,5	30
L/h	600	750	900	1050	1200	1350	1500	1650	1800
US Gal/min	2,64	3,30	3,96	4,62	5,28	5,94	6,61	7,27	7,93
US Gal/h	158,5	198,2	237,8	277,4	317,0	356,7	396,3	435,9	475,6
L/Min	32,5	35,0	37,5	40	42,5	45	47,5	50	100
L/h	1950	2100	2250	2400	2550	2700	2850	3000	6000
US Gal/min	8,59	9,25	9,91	10,57	11,23	11,89	12,55	13,21	26,42
					-				

improvement of our products, drawings, descriptions, features used on these data sheets are for guidance only and can be modified without prior advice

Contact us

www.ultimheat.com

Catalogues collection on

www.ultimheat.com

Electromechanical components & OEM heating sub-assemblies manufacturer

- · Mechanical thermostats
- Mechanical safeties single & three poles
- · ATEX thermostats & safeties
- Flow through liquid heaters
- Immersion heaters
- · Heating elements for air and liquid
- Connection blocks

- Housings for corrosive environments
- Flow switches
- Level switches
- · Pressure switches and air switches
- Fusible links and fire detection mechanisms
- Tracing equipment
- Taylor made solutions